Novel CO₂-Selective Membranes for CO₂ Capture from <1% CO₂ Sources DE-FE0026919

PI: Winston Ho, Professor

William G. Lowrie Department of Chemical & Biomolecular Engineering Department of Materials Science and Engineering The Ohio State University

> DE-FE0026919 Project Kick-off Meeting NETL, Pittsburgh, PA, April 4, 2016

Outline

- Project Objective
- Process
- Membrane
- Project Scope 3 Budget Periods
- Success Criteria
- Tasks 3-BP Gantt Charts
- Project Team and Outlook

Project Objective

- Develop a novel cost-effective membrane and design of membrane modules that capture CO₂ from <1% CO₂ sources
 - 90% CO₂ Capture
 - 95% CO₂ Purity

3-Budget Period Project

- BP1: 03/01/2016 02/28/2017
 - Laboratory-scale membrane synthesis, characterization and transport performance studies
 - High-level preliminary techno-economic analysis
- BP2: 03/01/2017 02/28/2018
 - Laboratory-scale membrane synthesis, characterization and transport performance studies to continue
 - Fabrication of larger lab size membrane (~ 6" by 6")
 - Fabrication, evaluation and down-selection from plate-andframe and spiral-wound membrane modules
 - Update techno-economic analysis performed in BP 1
- BP3: 03/01/2018 02/28/2019
 - Fabricate 3 laboratory membrane modules
 - Module testing with <1% CO₂ simulated gas mixture
 - Update techno-economic analysis
- Integrated program with fundamental studies, applied research, synthesis, characterization and transport studies, and high-level techno-economic analysis

Project Organization and Roles

Ohio State University

- Technical lead
- Concept development and execution
- Novel membrane synthesis/characterization
- Laboratory-size membrane scale-up
- Process design considerations
- Cost calculations

Winston Ho

DOE NETL

Project Manager

José Figueroa

TriSep Corporation

 Consult on membrane scale-up/module fabrication

Peter Knappe

Gradient Technology

 Consult on system and cost analyses

Steve Schmit

AEP

 Consult on plant integration and demonstration considerations

Matt Usher

Process Proposed for CO₂ Capture from <1% CO₂ Sources

 Proposed membrane process does not require cryogenic distillation (compared to competition)

Location of Proposed Technology in Coal-fired Power Plant

Selective Amine Polymer Layer / Polymer Support

Simplicity of Membrane for Low Cost

Selective Amine Polymer Layer / Polymer Support

- Selective Amine Polymer Layer
 - Facilitated transport of CO_2 via reaction with amine

 $CO_2 + R-NH_2 + H_2O \implies R-NH_3^+ + HCO_3^-$

- Facilitated transport = flux augmentation via reaction
- High CO₂ permeance and CO₂/N₂ selectivity

Scale-up for PES Support

Continuous Membrane Fabrication Machine at OSU

Successful Continuous Fabrication of Affordable PES Support Demonstrated in DE-FE0007632

14-inch PES Support

Casting Machine

SEM – Top View

2500 feet fabricated

- Manufacturer could not supply PES needed for scale-up
- PES synthesized/developed at OSU to resolve supply issue
- PES technology being transferred to TriSep

Successful Continuous Fabrication of Affordable PES Support

SEM Analysis of 14-inch PES Support

Ave. pore size = 69.5 nm, Porosity = 16.9%

Will Improve Polymer Support for Higher Membrane Performance 12

Amine Polymer Layer Contains Mobile and Fixed Carriers: Facilitated Transport

Facilitated Transport vs. Solution-Diffusion Mechanism

CO₂ Facilitated Transport Flux: Very High
 CO₂-amine reaction enhances CO₂ flux

- N₂ Flux: Very Low
 - N₂ does not react with amine
 - N₂ transport follows conventional physical solutiondiffusion mechanism, which is very slow

Carrier Saturation Phenomenon

• CO₂ Flux Increases as Pressure Increases until Carrier Saturation Occurs

- At Carrier Saturation, i.e., High CO₂ Pressure
 - CO₂ at high pressure reacts with all carriers incorporated in the membrane
 - CO₂ flux reaches maximum and does not increase with pressure any further

Carrier Saturation Phenomenon (cont'd)

- At Carrier Saturation (High CO₂ Pressure), i.e., Maximum, But Constant CO₂ Flux (j)
 - CO₂ permeance reduces as pressure increases
 - That is: CO₂ permeance increases as pressure reduces

• At Low CO₂ Pressure, i.e., Less CO₂ Molecules

- More free carriers available for reaction with CO₂
 - + Greater CO₂ facilitation and then higher CO₂ permeance
- CO₂ permeance increases as pressure reduces

SO₂ Membrane Mitigation

- Absorption into 20 wt% NaOH Solution
 - Polishing step based on NETL baseline document
 - Estimated to be about \$4.3/tonne CO₂ (in 2007 dollar, 6.5% COE increase)
 - Non-plugging, low-differential-pressure, spray baffle scrubber
 - High efficiencies (>95%)

SO₂ Effects on Amine-containing Membranes

- SO₂ Effects
 - SO₂ permeated with CO₂
 - SO₂ at 1 3 ppm did not affect stability of membrane with amine cover layer

Propose SO₂ Polishing Step before membrane

- 1 3 ppm SO₂ in flue gas
- Used in NCCC testing in 2015

Funding and Performance Dates

- Total Budget: 03/01/2016 02/28/2019
 DOE: \$1,248,278; OSU: \$372,864 (23% cost share)
 - BP1: 03/01/2016 02/28/2017
 DOE: \$407,616; OSU: \$121,756
 - BP2: 03/01/2017 02/28/2018
 DOE: \$419,628; OSU: \$125,344
 - BP3: 03/01/2018 02/28/2019
 DOE: \$421,034; OSU: \$125,764

Success Criteria

- BP1: 03/01/2016 02/28/2017 – CO₂ permeance = 700 – 850 GPU
 - $-CO_2/N_2$ selectivity = 100 140
- BP2: 03/01/2017 02/28/2018- CO₂ permeance = 850 - 1000 GPU - CO₂/N₂ selectivity = 100 - 140
- BP3: 03/01/2018 02/28/2019 – CO₂ permeance = 1000 – 1800 GPU – CO₂/N₂ selectivity = 140 – 200

Budget Period 1

	Total Cost			1st Quarter		2nd Quarter		Quarter		3rd Quart		rd Quarter		4th Quarter		rter		
Task Name	of Task (\$)	Start	Finish	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	
Budget Period 1	529,372	3/1/2016	2/28/2017															
Task 1: Project Management and Planning	6,388	3/1/2016	2/28/2017															
Task 2: Synthesis of Improved Polymer Support	107,470	3/1/2016	2/28/2017															
Task 3: Synthesis of Novel Membranes	131,353	4/1/2016	2/28/2017		/													
Task 4: Membrane Characterization	131,352	4/1/2016	2/28/2017															
Milestone 1: CO_2 permeance = 700-850 GPU & CO_2/N_2 selectivity =100-140			2/28/2017															
Task 5: Carrier Saturation Phenomenon Study	131,352	4/1/2016	2/28/2017															
Task 6: Techno-economic and System Analysis	13,645	3/1/2016	2/28/2017		/													
Milestone 2: Feasibility of \geq 90% CO ₂ capture with \geq 95% CO ₂ purity			2/28/2017															
Quarterly Progress Reports	4,322	3/1/2016	4/30/2017															
Budget Period 1 Annual Report	3,490	1/1/2017	4/30/2017															

Budget Period 2

	Total Cost			1st Quarter			2nd Quarter			: 3rd Quarter			4th Quarter				
Task Name	of Task (\$)	Start	Finish	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr
Budget Period 2	544,972	3/1/2017	2/28/2018														
Task 7: Project Management and Planning	6,388	3/1/2017	2/28/2018														
Task 8: Improved Membrane Synthesis	153,213	3/1/2017	2/28/2018														
Task 9: Improved Membrane Characterization	140,467	4/1/2017	2/28/2018		/												
<i>Milestone 3:</i> CO_2 <i>permeance = 850-1000 GPU & CO_2/N_2 selectivity =100-140</i>			2/28/2018														
Task 10: Comparative Membrane Configuration Evaluation	153,213	4/1/2017	2/28/2018														
Task 11: Contaminant Testing	70,234	4/1/2017	2/28/2018														
Task 12: Use and Refining of Techno-economic Analysis	13,645	3/1/2017	2/28/2018		/												
<i>Milestone 4: Economic feasibility of</i> \geq 90% CO2 <i>capture with</i> \geq 95% <i>purity</i>																	
predicted			2/28/2018														
Quarterly Progress Reports	4,322	3/1/2017	4/30/2018														
Budget Period 2 Annual Report	3,490	1/1/2018	4/30/2018														

Budget Period 3

	Total Cost			1st Qu	2nd Quarter			3rd Quarter			r 4th Quarte						
Task Name	of Task (\$)	Start	Finish	Mar Ap	r May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May
Budget Period 3	546,798	3/1/2018	2/28/2019														
Task 13: Project Management and Planning	6,388	3/1/2018	2/28/2019														
Task 14: Optimized Membrane Synthesis	117,307	3/1/2018	2/28/2019														
Task 15: Optimized Membrane Characterization	107,548	4/1/2018	2/28/2019														
<i>Milestone 5: CO</i> ₂ <i>permeance = 1000-1800 GPU & CO</i> ₂ / N_2 <i>selectivity =140-200</i>			2/28/2019														
Task 16: Contaminant Testing and Analysis on Membrane Performance	58,653	4/1/2018	2/28/2019			,											
Task 17: Membrane Module Fabrication	117,307	6/1/2018	11/30/2018														
Milestone 6: 3 laboratory membrane modules fabricated			11/30/2018														
Task 18: Membrane Module Testing	117,306	9/1/2018	2/28/2019														
<i>Milestone 7: CO</i> ₂ <i>permeance = 1000-1800 GPU & CO</i> ₂ / N_2 <i>selectivity =140-200</i>			2/28/2019														
Task 19: Update Techno-economic Model	13,645	3/1/2018	2/28/2019														
<i>Milestone</i> 8: <i>Economic feasibility of</i> \geq 90% CO ₂ <i>capture and</i> \geq 95% CO ₂ <i>purity</i>																	
targets predicted with final data and associated design guidelines			2/28/2019														
Quarterly Progress Reports	4,322	3/1/2018	3/30/2019														
Final Project Report	4,322	2/1/2019	5/30/2019														

Past Work Facilitates Success of Current Project

- PES Support Ready for Use/Improvement – Scale-up demonstrated in DE-FE0007632
- Amine Polymer Cover Layer can be Used as Selective Membrane
- Polyamine and Membrane Syntheses / Characterization Ready for Improvement
 - Good foundation and knowledge base for novel membranes
 - Experimental set-ups in place for current project
- Trained Qualified Researchers Available – In place and making impacts
- Membrane Module Fabrication Experience – Good for module fabrication of current project
- Techno-economic Analysis Conducted
 - Beneficial for high-level TEA of current project

Summary/Outlook

- Exciting Project
- Qualified Researchers are in Place
- Project Team is Ready for Significant Progress