Novel CO₂-Selective Membranes for CO₂ Capture from <1% CO₂ Sources DE-FE0026919

PI: Winston Ho, Professor

William G. Lowrie Department of Chemical & Biomolecular Engineering Department of Materials Science and Engineering The Ohio State University

DE-FE0026919 Continuation Application Status Meeting NETL, Pittsburgh, PA, February 27, 2017

Outline

- Project Objective and Scope
- Process and Membrane
- BP1 Accomplishments
- Membrane Performance
- Techno-Economic Analysis Results
- Proposed BP2 & BP3 Tasks & Budgets
- Closing Statement

Project Objective

- Develop a novel cost-effective membrane and design of membrane modules that capture CO₂ from <1% CO₂ sources
 - 90% CO₂ Capture
 - 95% CO₂ Purity

3-Budget Period Project

- BP1: 03/01/2016 02/28/2017
 - Laboratory-scale membrane synthesis, characterization and transport performance studies
 - High-level preliminary techno-economic analysis
- BP2: 03/01/2017 02/28/2018
 - Laboratory-scale membrane synthesis, characterization and transport performance studies to continue
 - Fabrication of larger size membrane (14" wide instead of 6")
 - Fabrication, evaluation and down-selection from plate-andframe and spiral-wound membrane modules
 - Update techno-economic analysis performed in BP 1
- BP3: 03/01/2018 02/28/2019
 - Fabricate 3 small pilot membrane modules (14" long)
 - Module testing with <1% CO_2 simulated gas mixture
 - Update techno-economic analysis
- Integrated program with fundamental studies, applied research, synthesis, characterization and transport studies, and high-level techno-economic analysis

Project Organization and Roles

Ohio State University

- Technical lead
- Concept development and execution
- Novel membrane synthesis/characterization
- Membrane scale-up
- Process design considerations
- Cost calculations

Winston Ho

DOE NETL

Project Manager

José Figueroa

TriSep Corporation

 Consult on membrane scale-up/module fabrication

Peter Knappe

Gradient Technology

 Consult on system and cost analyses

Steve Schmit

AEP

 Consult on plant integration and demonstration considerations

Matt Usher

Process Proposed for CO₂ Capture from <1% CO₂ Sources

 Proposed membrane process does not require cryogenic distillation (compared to competition)

Location of Proposed Technology in Coal-fired Power Plant

Selective Amine Polymer Layer / Polymer Support

Simplicity of Membrane for Low Cost

Selective Amine Polymer Layer / Polymer Support

- Selective Amine Polymer Layer
 - Facilitated transport of CO_2 via reaction with amine

 $CO_2 + R-NH_2 + H_2O \implies R-NH_3^+ + HCO_3^-$

- Facilitated transport = flux augmentation via reaction
- High CO₂ permeance and CO₂/N₂ selectivity

BP1 Accomplishments

- Improved 14"-wide PES Polymer Support Fabricated with Continuous Machine
 - Economical substrate for lab membrane synthesis
 - Hydrophilic polymer incorporated for improving porosity, permeance and adhesion
 - Resulting in improved membrane performance

Composite Membranes Synthesized in Lab

- High molecular weight polyamine synthesized
- Significant membrane performance improvement achieved
- Carrier saturation phenomenon elucidated
- 982 GPU with 211 CO₂/N₂ selectivity obtained at 57°C from lab test using 1% CO₂ concentration feed gas
 - + Met BP1 target (700 $\overline{850}$ GPU & CO₂/N₂ selectivity 100 140)
 - + 806 GPU with 173 CO_2/N_2 selectivity obtained using 20% CO_2 concentration feed gas due to carrier saturation phenomenon

BP1 Accomplishments (cont'd)

- High-Level Techno-economic Analysis Conducted
 - Capture cost of ~\$302/tonne CO₂ (in 2011 \$)
 - 21.8% increase in COE

• 5 Patent Applications Filed

3 for new membrane compositions

- + 2 U.S. patent applications
- + 1 PCT (Patent Cooperation Treaty) application
- 2 for new membrane processes
 - + 1 U.S. provisional patent application
 - + 1 PCT application

Scale-up for PES Support

Continuous Membrane Fabrication Machine at OSU

Successful Continuous Fabrication of Affordable PES Support Demonstrated

- Manufacturer could not supply PES for DE-FE0007632
- PES synthesized/developed at OSU to resolve supply issue
- PES technology being transferred to a membrane company₁₃

Successful Continuous Fabrication of Affordable PES Support

SEM Analysis of 14-inch PES Support

Ave. pore size = 41.1 nm, Porosity = 12.5%

 Optimal pore size identified to reduce penetration for improving membrane performance

Hydrophilic Polymer Incorporated **Improved Substrate Permeance**

Hydrophilic Polymer Incorporated Improved Membrane Permeance

Composite Membrane Synthesized Selective Amine Polymer Layer on PES Support

Selective layer = 165 nm

Significant Membrane Performance **Improvement Achieved**

Amine Polymer Layer Contains Mobile and Fixed Carriers: Facilitated Transport

Facilitated Transport vs. Solution-Diffusion Mechanism

CO₂ Facilitated Transport Flux: Very High
 CO₂-amine reaction enhances CO₂ flux

- N₂ Flux: Very Low
 - N₂ does not react with amine
 - N₂ transport follows conventional physical solutiondiffusion mechanism, which is very slow

Carrier Saturation Phenomenon

• CO₂ Flux Increases as Pressure Increases until Carrier Saturation Occurs

- At Carrier Saturation, i.e., High CO₂ Pressure
 - CO₂ at high pressure reacts with all carriers incorporated in the membrane
 - CO₂ flux reaches maximum and does not increase with pressure any further

Carrier Saturation Phenomenon (cont'd)

- At Carrier Saturation (High CO₂ Pressure), i.e., Maximum, But Constant CO₂ Flux (j)
 - CO₂ permeance reduces as pressure increases
 - That is: CO₂ permeance increases as pressure reduces

• At Low CO₂ Pressure, i.e., Less CO₂ Molecules

- More free carriers available for reaction with CO₂
 - + Greater CO₂ facilitation and then higher CO₂ permeance
- CO₂ permeance increases as pressure reduces

Carrier Saturation Phenomenon Data

High-Level Techno-Economic Calculations

- Basis: Membrane Results at 57°C
 - 982 GPU & 211 Selectivity for 1% CO₂ concentration feed gas
 - 806 GPU & 173 Selectivity for 20% CO₂ concentration feed gas
 - Include Membrane Module Installation Cost and 20% Process Contingency
 - In 2011 dollar: NETL Case 12 of Updated Costs (June 2011 Basis) for Selected Bituminous Baseline Cases

Calculated Cost Results

- 32.1 tonne/h of CO₂ captured from 1% CO₂ source
- \$107.8 million bare equipment cost
 Membrane 34%, blowers and vacuum pumps 62%, others 4%
- 1.76 ¢/kWh (1.24 ¢/kWh capital cost, 0.22 ¢/kWh fixed cost, 0.26 ¢/kWh variable cost, and 0.04 ¢/kWh T&S cost)
 COE = 8.09 ¢/kWh for 550 MW supercritical pulverized coal power plant
- \$302/tonne capture cost (\$17.6/MWh × 550 MW/(32.1 tonne/h))
- 21.8% Increase in COE (1.76/8.09 = 21.8%)

Effect of CO₂ Permeance on Techno-economic Analysis Results

BP1 Milestone Status Report

Milestone Title Description	Planned Completion Date	Actual Completion Date	Verification Method	Comments
Task 1. Project Management and Planning	02/28/2017			Good project progress made
Project Kickoff Meeting	04/04/2016	04/04/2016	Presentation file	
Task 2. Synthesis of Improved Polymer Support	02/28/2017			To complete on time
Polymer support >9000 GPU	02/28/2017	12/31/2016	Transport measurement	>9000 GPU achieved
Task 3. Synthesis of Novel Membranes	02/28/2017			To complete on time
High MW polyamine synthesized	02/28/2017	12/31/2016	Laboratory notebook	High MW polyamine synthesized
Task 4. Membrane Characteriz.	02/28/2017			To complete on time
CO ₂ permeance > 700 GPU	02/28/2017	12/31/2016	Performance data	BP1 target met
CO ₂ /N ₂ selectivity > 140	02/28/2017	12/31/2016	Performance data	BP1 target met
Task 5. Carrier Saturation Phenomenon Study	02/28/2017		Transport results	Carrier saturation phenomenon elucidated
Task 6. Techno-economic and System Analysis	02/28/2017			To complete on time
High-level techno-economic analysis	02/28/2017	12/31/2016	Capture cost results	Capture cost obtained
Quarterly reports submitted	4,7,10/30/ 2016 and 1,4/30/2017	Q1: 04/25/2016 Q2: 07/30/2016 Q3: 10/29/2016 Q4: 01/26/2017	Project Manager	On Schedule
Annual report submitted	04/30/2017		Project Manager	To submit on time

BP2 and BP3 Budgets

Budget Period	Federal Share	Non-Federal Share	Project Total
2	\$419,628	\$125,344	\$544,972
3	\$421,034	\$125,764	\$546,798

- BP2 budget amounts same as those submitted to and approved by NETL
- BP3 budget amounts also same as those submitted to and approved by NETL

BP2 Tasks – No Major Changes

Task 7 – Project Management and Planning

Task 8 – Improved Membrane Synthesis

- Incorporate high permeance PES substrate
- Synthesize improved CO₂ carriers (high MW polyamines)

Task 9 – Improved Membrane Characterization

Improve membrane performance in CO₂ permeance & selectivity

Task 10 – Comparative Membrane Configuration Evaluation

- Fabricate small pilot membrane modules with ~14 inches in length (instead of 6 inches in length to gain more progress)
- Evaluate both plate-and-frame and spiral-wound modules
- Down-select the better membrane module configuration
- Task 11 Contaminant Testing
 - Use simulated gas mixture (<1% CO₂) containing 3% O₂ and
 - $1 3 \text{ ppm SO}_2$
 - Investigate effect of contaminants

Task 12 – Use and Refining of Techno-economic Analysis

- Predict economic feasibility of \geq 90% CO₂ capture with \geq 95% purity

Budget Period 2

	Total Cost			1st Quarter		1st Quarter		1st Quarter		1st Quarter		1st Quarter		1st Quarter		1st Quarter		1st Quarter		Quarter		1st Quarter		2nd Quarter		nd Quarter		2nd Quarte		2nd Quarte		3r(d Qua	rter	4th	Quar	ter																																																																												
Task Name	of Task (\$)	Start	Finish	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr																																																																																																
Budget Period 2	544,972	3/1/2017	2/28/2018																																																																																																														
Task 7: Project Management and Planning	6,388	3/1/2017	2/28/2018																																																																																																														
Task 8: Improved Membrane Synthesis	153,213	3/1/2017	2/28/2018																																																																																																														
Task 9: Improved Membrane Characterization	140,467	4/1/2017	2/28/2018		/																																																																																																												
<i>Milestone 3: CO</i> ₂ <i>permeance</i> = 850-1000 <i>GPU</i> & CO_2/N_2 <i>selectivity</i> =100-140			2/28/2018																																																																																																														
Task 10: Comparative Membrane Configuration Evaluation	153,213	4/1/2017	2/28/2018																																																																																																														
Task 11: Contaminant Testing	70,234	4/1/2017	2/28/2018																																																																																																														
Task 12: Use and Refining of Techno-economic Analysis	13,645	3/1/2017	2/28/2018		/																																																																																																												
<i>Milestone 4: Economic feasibility of</i> \geq 90% CO2 <i>capture with</i> \geq 95% <i>purity</i>																																																																																																																	
predicted			2/28/2018																																																																																																														
Quarterly Progress Reports	4,322	3/1/2017	4/30/2018																																																																																																														
Budget Period 2 Annual Report	3,490	1/1/2018	4/30/2018																																																																																																														

Budget Period 3

	Total Cost			1st	1st Quarter			1st Quarter			1st Quarter		1st Quarter		2nd Quarter		2nd Quarte		Juarter		Quarter		d Quarter		2nd Quarter		d Qua	arter	4th	Qua	rter			
Task Name	of Task (\$)	Start	Finish	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May																
Budget Period 3	546,798	3/1/2018	2/28/2019																															
Task 13: Project Management and Planning	6,388	3/1/2018	2/28/2019																															
Task 14: Optimized Membrane Synthesis	117,307	3/1/2018	2/28/2019																															
Task 15: Optimized Membrane Characterization	107,548	4/1/2018	2/28/2019		/																													
<i>Milestone 5: CO</i> ₂ <i>permeance = 1000-1800 GPU & CO</i> ₂ / N_2 <i>selectivity =140-200</i>			2/28/2019																															
Task 16: Contaminant Testing and Analysis on Membrane Performance	58,653	4/1/2018	2/28/2019				/																											
Task 17: Membrane Module Fabrication	117,307	6/1/2018	11/30/2018																															
Milestone 6: 3 pilot membrane modules fabricated			11/30/2018																															
Task 18: Membrane Module Testing	117,306	9/1/2018	2/28/2019																															
<i>Milestone 7: CO</i> ₂ <i>permeance = 1000-1800 GPU & CO</i> ₂ / N_2 <i>selectivity =140-200</i>			2/28/2019																															
Task 19: Update Techno-economic Model	13,645	3/1/2018	2/28/2019																															
<i>Milestone 8: Economic feasibility of</i> \geq <i>90% CO</i> ₂ <i>capture and</i> \geq <i>95% CO</i> ₂ <i>purity</i>																																		
targets predicted with final data and associated design guidelines			2/28/2019																															
Quarterly Progress Reports	4,322	3/1/2018	3/30/2019																															
Final Project Report	4,322	2/1/2019	5/30/2019																															

Summary

- Achieved Milestones/Success Criteria for BP1
 - Composite membranes synthesized in lab
 - + 982 GPU with 211 CO₂/N₂ selectivity obtained at 57°C from lab test using 1% CO₂ concentration feed gas
 - + 806 GPU with 173 selectivity obtained using 20% CO₂ concentration feed gas due to carrier saturation phenomenon
 - Improved 14"-wide PES polymer support fabricated with continuous machine
 - Carrier saturation phenomenon elucidated
 - High-level techno-economic analysis conducted
 - + Capture cost of ~\$302/tonne CO₂ (in 2011 \$)
 - + 21.8% increase in COE
- Proposed BP2 Tasks in Place
 - Logical next step
- Asking NETL to Authorize Proposed BP2 Research, Budget, and Schedule