

High Power, Low Cost SOFC Stacks For Robust And Reliable Distributed Generation

Award No. DE-FE0026189

PI: Bryan Blackburn, Ph.D. Redox Power Systems, LLC Project Kickoff 12/02/2015

NETL Project Partners

- Univ. of Maryland Energy Research Center (UMERC)
- Center for Advanced Life Cycle Engineering (CALCE) at the Univ. of Maryland

Redox Cube
•25 kW, natural gas, stationary power system
•> 50% efficiency
•Compact (~1 m³)
•Lightweight (< 1000 lbs)

For more info: www.redoxenergy.com

Commercial Partners:

- Trans-Tech Inc.
- Strategic Analysis Inc.

Introduction to Redox

- Redox Power Systems founded in 2012, located in College Park, MD
- Over 25 years of Solid Oxide Fuel Cell (SOFC) development to achieve:
 - 10x higher power density than competing SOFCs
 - At 100s of degrees lower operating temperature
 - Using natural gas fuel
 - To result in a more compact and lower cost systen with improved load following capabilities
 - Using a proprietary bilayer cell structure
- Private + gov't funding: DoE (ARPAE, EERE, NETL) & DoD
- SOFC cells are manufactured with our ISO 9001 partner Trans-Tech Inc, a division of Skyworks Solutions

REDOX POWER SYSTEMS, LLC

Redox Product Manufacturing Overview

Introduction to Partner Organizations

• UMERC (under direction of Prof. Eric Wachsman)

- multidisciplinary initiative dedicated to advancing the frontiers of energy science and technology, with a special focus on forward-looking approaches for alternative energy generation and storage
- heavily involved in NETL SOFC degradation investigations for more than a decade
- developed unique techniques for investigating degradation of cathode materials using isotope exchange
- pioneered the use of FIB-SEM reconstruction to to quantify porous cathode microstructure at the sub-micron level and ultimately to develop higher performance cathodes

• CALCE (under direction of Prof. Michael Pecht)

- founder and driving force behind the development and implementation of physics-of-failure (PoF) approaches to reliability
- world leader in accelerated testing, electronic parts selection and management, and supplychain management
- first academic research facility in the world to be ISO 9001 certified
- funded by over 150 of the worlds leading electronics companies at more than US\$6M/year
- Experience developing techniques for extending the lifetime of electrochemical devices, such as lithium ion batteries, under real world operating conditions

NETL Project Objectives

- **Purpose:** To further develop high power density, low cost SOFC stacks for robust and reliable distributed generation.
- The objective of the overall project is to improve performance/ durability of Redox stacks while reducing costs through:
 - -the scale-up of current stack module designs to 5-10 kW
 - -the determination of cell and stack degradation mechanisms between 500-650°C through accelerated testing and subsequent cell and stack optimization to improve long-term stability
 - -the development and testing of a robust 5-10 kW stack design that can support electrical load and thermal cycling requirements
 - detailed cost analysis to show a 20% manufacturing cost improvement for the stack over current 2020 DOE cost targets

Approach Summary: IT-SOFC Stack

- Increased Efficiency
 - Er stabilized Bi₂O₃ (ESB):
 - * 60X conductivity of YSZ @ 600°C
 - * unstable at low PO₂ (fuel conditions)
 - Gd doped CeO_2 (GDC):
 - * > 5X conductivity of YSZ @ at 600°C
 - * electronic leakage in fuel conditions, lowers efficiency
 - Solution: a bilayer of GDC (fuel side) and ESB, stops ceria electronic leakage & Bi₂O₃ decomposition
 - Goal: Optimize bilayer for best compromise between stability and performance in stack up to 10 kW

 L_{ESB}

 L_{GDC}

L_{GDC} L_{ESB}

 P_{0_2}

Air

 \mathbf{P}_{O_2} Profile

Approach Summary: IT-SOFC Stack

The Cell

- Bilayer electrolyte +high performance cathode yield ultra high power density (> 2 W/cm² in lab testing)
- Lower operating temperatures (down to < 400 °C, or 700 °F)
- Current anodes can run on wide range of hydrocarbon fuels with high efficiency
- New ceramic anodes can also be thermally cycled for enhanced load following

- The Stack
 - Lower operating temperatures = lower cost metal interconnects, less insulation
 - Conventional sealing materials like those used in automotive industry

Optimized designs for 5-10 kW stacks and IT operation

- 500-650°C operating temperatures
- Use proprietary Redox multi-physics bilayer model to optimize stack design for up to 10 kW
- Support modeling with elevated temperature mechanical testing (stress concentrations and creep)
- Improve assembly techniques (e.g., alignment and compression load)

5-10 kW stack demo

- Bilayer cell performance maps for up to 10 kW stack, feed results back to model for design optimization
- Long term testing > 1,000 hours
- Fully instrumented test setup for evaluation of fuel utilization, degradation, and performance

High Power, Robust Stack

- Large format cells with high power have been scaled in manufacturing
 - 10 cm by 10 cm cell performance matches button cell results in 100% slip condition (21% CH₄, 39% H₂, 4.4% CO)
- 1 kW stack size to be scaled to 5-10 kW size
 - Single stack, or
 - Stack module (no less than 2.5 kW each)

Project Task Summary

- Task 1: Project Management and Planning
- Task 2: Develop High Power, Robust, Low Cost IT-SOFC Stacks
- Task 3: Improve Long-Term Stability and Reliability of High Power, IT-SOFC Stacks
- Task 4: Demonstrate a Robust 5-10 kW Stack or Stack Module for Distributed Generation
- Task 5: Perform a Detailed Cost Analysis of High Power, IT-SOFC Stacks

Multi-Physics Tool for Stack Scale-up

Task 2

- Custom 3D computational model takes into account the unique thermochemical and physical properties of the Redox materials as derived from more fundamental materials and electrochemical measurements
- Model considers impacts of leakage current (electron current) on the OCV drops from theoretical Nernst potential due to over-potentials associated with the electrolyte and electrodes
- Model also captures the kinetics of electrochemical and heterogeneous internal reforming reactions in the anode

Modeling Effort in NETL Project

- Optimize stack design through parametric studies
 - cell geometry/composition and interconnect flow field geometry) to minimize pressure drops, improve flow distribution, and minimize thermal gradients under rapid startup, normal operation, and load-following conditions
 - Mechanical degradation through thermal gradients and phenomena such as creep at elevated temperatures
- Evaluate cell/stack performance in conjunction with accelerated testing and lifecycle testing to help choose final operating conditions for tests and to help analyze results.

Stack Assembly Improvements

Stack

Redox Production Cells

Stack Assembly Press Instrumentation Upgrade

-increase size & degree of automation
-acoustic emissions
-dynamic tracking of applied load & compression

Leak Check QC

-improved procedures -correlation to elevated temperature testing & manufacturing QC information

feedback for production optimization

*Ref. US Fuel Cell Council, Document No. 04-070

12/02/15

Task 2

IT-SOFC Stack & Stack Module Testing Task 2-4

- As the size increases, stacks shall be tested under relevant conditions to validate the performance of optimized stack designs.
- Up to 3 separate test/analyze cycles to fully characterize cells and stacks for up to 1,000 hours.
- Shorter test durations are expected after design changes are initially made in order to fully characterize the changes in conjunction with validation of modeling efforts.
- Stacks shall be tested between 500-650 °C
 - I-V and impedance spectroscopy measurements
 - constant current loads for long-term tests

Improve Stability/Reliability of the Cell

Task 3

- A variety of techniques will be used to investigate degradation mechanisms
 - -Impact of H₂O, CO₂, Cr vapor for LSM-ESB cathode
 - -EIS and oxygen isotope exchange
 - -FIB/SEM and TEM/EDS

Reduce Stack Degradation

Extensively instrumented to capture dynamic behavior

Stack Lifecycle Analysis Modeled and Evaluated Using:

- Strength, creep, and acoustic emission spectroscopy data of stack materials & components
- Multiphysics modeling of components
- Long-term measurements under normal operational conditions
 - Power output, voltage changes, component conductivity
- Accelerated stack testing under extreme temperature and load
- Modeling of material and operational costs over lifetime of stack

 H_2

CH.

CO.

CO

Task 2-4

Testing Different Operating Conditions

Task 2-4

Dashboard and test sequence input

How Resultary Resu	Filter Bare	01	2 089
Ben Sergiati Flas Sergiati Ben Sergiati	Para Indynist Para Ind	(91)	Contraction of the local division of the loc
Appendiate Respective Respeci	Respectivity Respectivity<		- 01
BLCM LBB ECM DB ECM Graphic Gr	Line ICCM Line ICCM <thline iccm<="" th=""> Line ICCM <thline iccm<="" th=""> Line ICCM <thline iccm<="" th=""> <thline iccm<="" th=""> <thlin< td=""><td>014</td><td>004</td></thlin<></thline></thline></thline></thline>	014	004
		013	00
An Balan B Balan Balan B		016	2 0#
ORENT PAUES	Factor Datas Datas Hatas	047	2 011
CUBINT VALUES		011	0104
	OARANT VALUES		

Gas flow control

Durability & Accelerated Testing

- Physics-of-failure, durability, and accelerated tests will be developed by CALCE and Redox as test methodologies and protocols are optimized for assessing and quantifying cell/stack degradation and failure.
 - Temperature and pressure dependence of Ni particle sintering and relative morphology change, in particular in the presence of steam;
 - □ Accelerated electro-migration due to high operation current density
- Testing will result in an understanding of performance degradation mechanisms by both individual and combined contaminant effects, and will allow us to make enhancements.
 - □ Homogenizing stress, flow and temperature distributions of the stack as well as balancing leakage and mechanical failure
 - □ Infiltration to modify the cell components for mitigating both material intrinsic and extrinsic degradation modes.

Cell / stack failure	Mechanical	Chemical-Electrochemical
Cracks in cell	Creep in stack components, thermal cycling	Changes in cell porosity and tortuosity
Delamination of layers in cell	Poor adhesion of layers	Chemical reactions and phase changes
Leakage of stack (sealing failure)	Thermal cycling of seal materials	Contamination by impurities, corrosion, red-ox of materials
Malfunctions of cell/stack during conditioning, thermal and red-ox cycling, or load following	Sintering volume change due to high current density or steam	Electromigration and interdiffusion
Poor cell electrical conductivity	Thermo-mechanical failure due to extreme thermal gradients	Impact of steam on anode or cathode, corrosion of interconnect
12/02/15	REDOX POWER SYSTEMS, LLC	17

Distributed Generation Demonstration

Task 4

- 5-10 kW Demo
 - Initial stack demos at 0.5-1.0 kW size with reformate
 - Subsequent stack demos at 2.5 kW stack size
 - Final stack demos at 5-10 kW stack or stack module
 - Stack demonstrations conducted for up to 1,000 hours under normal operating conditions and various load profiles characteristic of perceived final application
 - The primary objective of these tests is to demonstrate low degradation rates (target: < 0.5% per 1,000 hours) and durability (thermal, load-following, and reduction-oxidation cycles) of the 5-10 kW stack or stack module.

Detailed Cost Analysis of Stacks

- Cost Analysis
 - Demonstration of a 20% reduction in the current DOE cost target with a detailed cost analysis (Redox Target: \$180-\$200/kW)
 - Cost analysis will begin with production process flows and associated raw materials and handling costs
 - detailed study of actual ISO 9001 manufacturing processes and how various automation steps can decrease costs and improve product quality with the larger size stacks
 - trade studies on how best to form interconnects and seals in light of design changes that are likely to occur as a result of scaling the size of the stack
 - sensitivity studies of various aspects of the manufacturing process as it relates to specific design choices for the larger size stack
 - During the project we will adjust current cost estimate models for assembly cost projections with the larger size stacks

Project Schedule

		20	14						2	015					2016					2017											
Q-7	Q-6		Q-5	00 1	Q-4	Q-3	0.2	C	2-2	Q-1	00	10	21	01	Q2		Q3 Q4 Q5				01	Q6	0.1	Q7	00	Q8	(29	Q10	Q11	
02 03	04 05	06 0.	08	09 1	0 11 12		03				09	10 .	11 12	2 01	02 03	s (04 05 06	07	08 0	. 99	10 11 12	01	02 03	04	05 0	06	07 08 09	10	11 12	01 02 03	04
						Redox I	NET	LDE	-FEO	026189																					Ť
		Task 1	: Pro	ject I	Manage	ment, P	lanr	ning,	& Re	porting	÷					-															\
				м1.1	. Accele	erated/L	ifec	cycle	/Failu	ire Test	Pla	ın (V	′1) C	omp	lete																
Task 2	2: Dev	elop H	ligh I	Powe	r, Robu	st, Low	Cos	t IT-	-SOFC	Stacks	÷													-						-	
					M2.1	. Mecha	anic	al D	egrad	ation In	cor	pora	ated	Into	Redo	x	Model <														
										M2.2. D	esi	gn o	of Im	prov	ed 1k	W	Stack Co	pmp	lete												
											Μ	12.3	. Tes	ting	of Im	pro	oved 1k\	W St	ack C	Con	nplete 🔇	>									
															Ν	12.	4. Desig	n &	Testi	ing	of 2.5kV	V Sta	ick C	om	olete		•				
																		M2	2.5. D	Desi	ign & Tes	ting	of 5	-10	kW S	tac	k Comple	te	\diamond		
	Task 3	: Imp	ove	Stabi	lity/Rel	iability o	of H	ligh	Powe	r Stacks	÷					-												-			
						M3.1	. Ele	ectro	olyte,	Cathode	e, &	a Ano	ode S	Stab	ility Ev	val	uated <	\													
							M	3.2.	Degra	adation	Me	char	nism	s Ide	ntifie	d 8	& Test Pla	an C	Comp	olet	e 🔷										
												М3	.3. 0	Optir	nized	Ċe	ell Accele	erat	ed/Fa	ailu	re Tests	Star	ted								
														M	3.4. In	npi	roved Ce	ell St	tabili	ty (< 0.5% p	er 1	000	h) A	chiev	/ed	\diamond				
																M	3.5. Stac	k Ad	ccelei	rate	ed/Lifecy	cle/	Failuı	re T	ests (Cor	nplete <				
				Tas	sk 4: De	emo Rob	oust	: 10	kW St	ack or S	tac	k M	odul	e foi	r DG	-		l						_							-
																		1	M4.1.	. 2.	5kW Stac	k (<	0.5%	6 pe	r 100	00 H	h) Demon	strat	ed 🔇	>	
																				ſ	M4.2.5-3	10kV	V Sta	ck (< 0.5	5% p	oer 1000	h) De	emon	strated <	\
			т	ask !	5: Perfo	rm Cost	: An	alys	is of I	ligh Pov	ver	, IT-	SOF	C St	acks	Ļ															Ļ
										5	-			M5	.1. Co	ost	of 5-10	kW '	Stack	(VS	. Stack M	lodu	le Co	mp	ared		•				
															.1.00		0, 5 10							۲. ۲	¢200		N/ D				
																		M	5.2. !	5-13	LUKW Stae	ск С	ost o	1 <	\$200)/K/	w Demon	strat	ed (

Project Milestones

WBS	Description/Title	Start/ End	Verification Method
Task 1.0	Project Management, Planning, & Reporting	Q1/Q10	
M1.1	Accelerated/Lifecycle/Failure Test Plan (V1) Complete	Q1/Q2	Test Plans
Task 2.0	Develop High Power, Robust, Low Cost IT-SOFC Stacks	Q1/Q8	
M2.1	Mechanical Degradation Incorporated Into Redox Model	Q1/Q3	Model Validation
M2.2	Design of Improved 1kW Stack Complete	Q1/Q4	Report
M2.3	Testing of Improved 1kW Stack Complete	Q1/Q5	Test Data
M2.4	Design and Testing of 2.5kW Stack Complete	Q3/Q7	Test Data
M2.5	Design and Testing of 10kW Stack Complete	Q5/Q9	Test Data
Task 3.0	Improve Stability/Reliability of High Power Stacks	Q1-Q8	
M3.1	Electrolyte, Cathode, and Anode Materials Stability Evaluated	Q1/Q3	Report
M3.2	Cell Degradation Mechanisms Identified and Test Plan Complete	Q1/Q5	Test Plans
M3.3	Optimized Cell Accelerated/Failure Tests Complete	Q3/Q6	Test Data
M3.4	Improved Cell Stability (< 0.5% per 1000 h) Achieved	Q1/Q7	Test Data
M3.5	Optimized Stack Accelerated/Lifecycle/Failure Tests Complete	Q4/Q8	Report
Task 4.0	Demonstrate a Robust 10 kW Stack or Stack Module for DG	Q3/Q10	
M4.1	2.5kW Stack (< 0.5% per 1000 h) Demonstrated	Q4/Q9	Test Data
M4.2	5-10kW Stack (< 0.5% per 1000 h) Demonstrated	Q8/Q10	Test Data
Task 5.0	Detailed Cost Analysis of High Power, IT-SOFC Stacks	Q3/Q10	
M5.1	Cost of 5-10kW Stack vs. Stack Module Compared	Q3/Q7	Report
M5.2	5-10kW Stack Cost of < \$200/kW Demonstrated	Q3/Q9	Report