the Energy to Lead

Pilot Test of a Nanoporous, Super-hydrophobic Membrane Contactor Process for Post-combustion CO₂ Capture

DOE Contract No. DE-FE0012829

S. James Zhou, Shiguang Li, Travis Pyrzynski, and Howard Meyer, *GTI*Yong Ding and Ben Bikson, *PoroGen*Katherine Searcy, *Trimeric*

Project Review at NETL

February 6, 2015

Project objectives and goal

Objectives:

- Build a 1 MW_e pilot-scale CO₂ capture system (20 ton/day) using PEEK hollow fibers in a membrane contactor and conduct tests on flue gas at the NCCC
- Test the pilot system under steady-state conditions for a minimum of two months
- Gather data necessary for process scale-up

Goal

 Achieve DOE's Carbon Capture performance goal of 90% CO₂ capture rate with 95% CO₂ purity at a cost of \$40/tonne of CO₂ captured by 2025

Our team

Member	Specific Project Roles			
gti	 Project management and planning EH&S analysis System design and construction Site preparation, system installation, and shakedown Pilot test at the NCCC 			
Poro Geninnovative MEMBRANE PRODUCTS	PEEK hollow fiber and module developmentSupporting system design and construction			
TRIMERIC CORPORATION	Techno-Economic Analysis			
TBD	Consulting support on gas compression			
CANTION OF THE PARTY OF THE PAR	Site host			

Timeline and scope

Conceptual diagram for a 24 module skid for 8-inch diameter modules

Anticipated slipstream feed conditions at NCCC

Parameter	Condition	
Pressure	~ atmospheric pressure	
Temperature	~ 40 °C (100 °F) after cooling	
Gas composition	CO ₂ concentration: ~13 vol%	
Water vapor in feed stream	Fully saturated	
Contaminant levels	SO ₂ level: 20-30 ppm or ~1 ppm	
Total flue gas flow rate	Max. 10,000 lb./hr.	

Tests will also be conducted with ~ 150 ppm SO_2 in the feed to mimic the flue gas compositions of burning Illinois coal

Integration of membrane contactor 1MW pilot plant at NCCC

NCCC's PC4

Our 1 MW_e system

BP1: performance period and funding

- Funding: \$2,979,497 in total
 - DOE: \$2,176,897 (72%)
 - Cost share: \$802,600 (28%)
 - GTI: \$515,519
 - ICCI: \$150,000
 - PoroGen: \$100,000
 - MHPS: \$37,081
- Performance period: Oct. 1, 2013 June 30, 2015
- Project participants:
 - GTI PoroGen Trimeric MHPS

BP1 objectives

- Develop preliminary Techno-Economic Analysis (TEA) and Environmental, Health & Safety study (EH&S) based on bench-scale test data
- Determine scaling parameters for 2,000 GPU hollow fiber membrane modules to 8-inch diameter by 60-inch long commercial modules
- Design an HFMC pilot system for flue gas CO₂ capture at 1 MW_e equivalent scale (20 ton CO₂/day)

BP1 tasks

- Task 1 Project management
- Task 2 Preliminary TEA and EH&S study
- Task 3 Determination of scaling parameters for 2,000 GPU hollow fiber membrane modules
- Task 4 Bench-scale testing in support of the pilot-scale design effort
- Task 5 Design and costing of the 1MW_e equivalent CO₂ capture system

Task 1 scope: project management

 GTI will coordinate all project activities with Team Members and will report technical progress and financial results to DOE throughout the duration of the project

Status for the DOE DE-FE0012829 project

- TEA and EH&S reported submitted and approved
- Test solvent switched from H3-1 to aMDEA due to the difficulties in completing process modeling for the H3-1 solvent with available data
- A GO decision was reached on 10/1/2014 for our team to start work on BP1 Tasks 3-5
- A <u>9-month extension</u> was requested and approved for completing Tasks 3-5 for the design of the 1MW_e equivalent membrane contactor pilot CO₂ capture test system with additional funding of \$186 K from DOE and \$46 K from recipient

BP1 schedule and milestones

Task No.	Milestone Description	Planned Completion	Actual Completion	Verification Method
1	Updated Project Management Plan (PMP)	11/30/13	11/06/2013	PMP file
1	Kickoff Meeting	12/31/13	11/13/2013	Presentation file
2	Complete preliminary TEA and EH&S study	12/24/13	09/29/2014	Topical Reports
3,4	Achieve membrane intrinsic CO ₂ permeances of 2,000 GPU in 8-inch diameter modules	03/30/15	on target	Quarterly Report
5	Issue pilot-plant design package	05/01/15	on target	Topical Report
	Complete Design and TEA	06/30/15		Annual Report

BP1 success criteria

- Target performance demonstrated with the PEEK hollow fiber membrane: membrane intrinsic permeance > 2,000 GPU; and
- 2. Final pilot-plant design package design review with DOE and NCCC HAZOP and DHR finalized

Task 2 scope: preliminary TEA and EH&S study

Subtask 2.1: Preliminary TEA

- Basis for the analysis: a net 550 MW_e power plant
- Complete a preliminary process design that includes major equipment sizing and energy and mass balances

Subtask 2.2: Preliminary EH&S study

- Identify significant EH&S risks
- Evaluate emissions types, levels, and properties, and safe handling and storage procedures

Key results from the preliminary EH&S study

- No significant EH&S risks to pilot plant operators, test center employees, and surrounding area environment
- The pilot CO₂ capture project will not generate appreciable new air emissions
- aMDEA has an LD50 value of 4,680 mg/kg (BASF-Test) indicating low toxicity
- The aMDEA aqueous solution is not flammable
- The membrane contactor process with aMDEA solvent can be safely operated in compliance with all applicable laws and regulations.
- Nitrosamine will pose no significant risk from inhalation
- A HAZOP review meeting will be held with NCCC personnel during the final design review process and a letter from SCS/NCCC affirming process safety compliance will be obtained before fabrication or procurement of equipment begins

Task 2 progress

Preliminary TEA was based on field test results at Midwest with aMDEA solvent

Feed conditions

Element	Concentration	
CO ₂	7.4-9.6 vol%	
NO_{x}	40-60 ppmv	
SO ₂	0.4-0.6 ppmv	
CO 100-600 ppmv		
O ₂ 8.5-11 vol%		
Balance: N ₂ , water vapor and trace elements		

High mass transfer coefficient achieved

Total gas flow rate, L(STP)/min	CO ₂ removal,	Volumetric mass transfer coefficient, (sec)-1
245	93.2	1.2

Mass transfer coefficient for conventional contactors: 0.0004-0.075 (sec)-1

Cost of CO₂ capture for HFMC technology with aMDEA vs. DOE Case 12

ltem	Unit	Bench scale field test data	Target mass transfer coefficient achieved	DOE Case 12 (Econamine™)
COE - No TS&M	mills/kWh	127.1	122.1	137.3
COE - Total	mills/kWh	137.1	132.1	147.3
Incremental Cost of CO ₂ Capture - No TS&M	mills/kWh	46.2	41.2	56.3
Increase in COE - No TS&M	%	57.0%	50.9%	69.6%
Increase in COE - Total	%	69.4%	63.2%	81.9%
Cost of CO ₂ Capture - No TS&M	\$/tonne	49.35	44.00	56.47
% Change		-13%	-22%	0%
Cost of CO ₂ Capture – No TS&M with H3-1 solvent	\$/tonne	41.89	40.42	56.47

Task 2 progress

Steps to take for the cost of CO₂ capture for HFMC technology to reach DOE target

- PEEK contactor mass transfer increase beyond the current target of 1.7 (sec)⁻¹ to reduce CAPEX
- Integration of PEEK membrane contactor technology with other advanced carbon capture technologies
- Use of lower regeneration energy solvent
- Use of new, energy efficient solvent regeneration processes

Task 3 scope: determination of scaling parameters for 2,000 GPU hollow fiber membrane modules

- 2,000 GPU hollow fibers will be prepared and installed into commercial-sized 8-inch diameter modules and determine scaling parameters
 - ✓ Gas and liquid flow distribution
 - ✓ Gas and liquid side pressure drops
 - ✓ CO₂ removal performance/mass transfer coefficients
 - √ Temperature distributions

Membrane and module development

- PoroGen fabricated larger ID fibers in 2-inch modules to achieve
 2,000 GPU CO₂ permeance and lower gas-side pressure drop
- GTI tested modules in contactor mode, provided feedback to PoroGen for membrane and module scale up
- GTI tested performance stability during startup/shutdown cycles
- Fabrication of modules to 8-inch diameter ongoing

Module manufacture cycle time: 6-8 weeks

- PoroGen: from PEEK pellets to fiber to cartridge to module takes 5 to 6 weeks
- GTI: performance (including stability) tests take 1-2 weeks
- Total cycle time 6 to 8 weeks for each variation of module
- 1 MWe is expected to need 50 to 60 8-inch diameter modules
- PoroGen's current capacity is about 1,000 module/year

Larger inner diameter fibers produced to decrease pressure drop

- The requirement related to pressure of HFMC process: inlet flue gas pressure must be slightly higher than the ambient pressure in order to ensure uniform flue gas flow through the hollow fibers
- Field test: $\Delta P = \sim 5$ psi, needs to decrease to < 2 psi (our target)
- The Hagen–Poiseuille equation:

$$\Delta P = \frac{8Q\eta L}{\pi \cdot r^4}$$

Q: volumetric flow rate, η: absolute viscosity of the fluid, L: length of the hollow fiber, and r: radius of the hollow fiber

Low gas-side pressure drop for larger ID fibers modules

- Fiber inner diameter is being increased from current 13 mil to at least 17
 mil to meet the ΔP target
- Larger ID (20 mil) fiber module has been fabricated and tested

Cartridge No.	Number of Fibers	Active Fiber Area (inside, cm²)	2" gas-side Δp, psid	8" gas-side Δp, psid
2PG-664	448	3,161	0.28	0.74
2PG-665	448	3,161	0.28	0.74

High performance for the larger ID fibers confirmed

Intrinsic CO₂ permeance as high as 2,600 GPU (our target: 2,000 GPU)

Cartridge No.	Number of Fibers	Active Fiber Area (inside, cm²)	Pure CO ₂ Permeance (GPU)
2PG-664	448	3,161	2,600
2PG-665	448	3,161	2,500

- Contactor testing with aMDEA solvent: mass transfer coefficient of 1.61 sec⁻¹ (close to <u>our target</u> of 1.7 sec⁻¹) at 90% CO₂ removal
- Low gas-side ΔP of 0.28 psi was observed for the 2-inch module
 - ΔP as low as 0.74 psi (<u>our target</u>: less than 2 psi) is predicted for the 8-inch diameter module

Task 4 scope: bench-scale testing in support of the pilot-scale design effort

- Subtask 4.1: QC testing of the PEEK hollow fiber membrane
- Subtask 4.2: Membrane contactor testing and modeling

Task 4 progress

Factors affecting CO₂ capture performance have been tested at PoroGen and GTI

- O-rings/other components
- Epoxy/fiber interface in tubesheets
- Wet out of hydrophobic surface in long-term operation
- Module startup/shutdown procedures

Addressing epoxy/fiber interface adhesion (continued)

Cross sections of fractured tubesheets

Tubesheet with poor fiber epoxy adhesion

Tubesheet with good fiber epoxy adhesion

Progress has been made for the first three factors

- No problems with O-ring seals were noted through tests of multiple 2" diameter modules, some after prolonged operation
- Completed development of tubesheet fabrication procedure

Tubesheet with good fiber epoxy adhesion

 No wet out of hydrophobic membrane surface after long-term operation based on single-gas CO₂ permeation measurements before and after contactor testing

Task 5 scope: design and costing of the 1MW_e equivalent CO₂ capture system

Final design package includes:

- Cost to build with a +/- 10% accuracy
- Final PFD, P&ID, general arrangement and elevation drawings
- Slipstream feed conditions
- Liquid side conditions
- Estimated CO₂ delivery conditions
- Start-up, steady-state operation, and shut-down procedures
- Protocols, methods, measurements, and quality assurance for baseline and performance testing

Design and costing ongoing

- Some items identified through preliminary TEA
 - Slipstream feed conditions
 - Liquid side conditions
 - Estimated CO₂ delivery conditions
- Discussed with the host site (NCCC) engineers
 - Utility needs
 - Operating philosophy and duties for each party
 - HAZOP review

Plan and status

- Preliminary design package
 - Developed by GTI (with NCCC and PoroGen)
 - Deliverable: bid package for potential system fabricators
- Firm bids from skid fabricators
 - Pre-screen several potential bidders
 - Deliverable: firm bids by late-February
- Cost estimate +/- 10 % (by mid-March)

Preliminary design package

- PFD and material/energy balances
 - Completed for NCCC (20 tons/day CO₂ captured) 11/14/14
- P&ID's
 - Second review with NCCC engineers completed 1/23/15
- Equipment sizing and instrumentation
 - Completed equipment and instrument data sheets 2/4/15
- Final HAZOP with NCCC
 - To take place at NCCC 02/23 to 02/25/15

Firm bids from vendors

- Vendors will bid on:
 - Completion of detailed engineering
 - Detailed engineering
 - PFD, P&ID's, utility requirements
 - Final Equipment and instrumentation data sheets
 - Layout/detailed schedule
 - Spec for control system
 - Procurement of equipment and instrumentation
 - Construction of pilot-scale HFMC unit
 - Fabrication of skid(s)
 - Factory acceptance testing
 - Installation and startup

Estimated cost to build

- PFD and P&ID provided to all four fabricators
- Bid package with equipment specifications and instrument list will be delivered to fabricators the week of <u>02/02/15</u>
- Meeting with fabricators to take place the week of <u>02/08/15</u>
- Firm quote to GTI <u>03/16/15</u>
- Continuation application for BP2 with firm budget to build submitted to DOE <u>03/31/15</u>

Timeline to pilot test

NCCC test schedule

For GTI pilot test

- PO-5 possibly from Apr/May-Jul/Aug 2016
- PO-6 possibly from Oct/Nov 2016 –Feb/Mar 2017

Summary

- Preliminary EH&S study and TEA completed, cost of HFMC with aMDEA solvent can be 22% lower than the DOE Case 12
- New PEEK fibers targeting low gas side pressure developed
 - Intrinsic CO₂ permeance as high as 2,600 GPU
 - Gas side ∆P as low as 0.74 psi predicted for 8-inch module
- A new process for regeneration designed and tested
- Fabrication of 8-inch module in progress
- Design of 1 MW_e pilot plant is near completion
 - Bid package to vendors by first week of February
 - Firm quote to GTI by 03/16/15
 - Continuation application to DOE by 03/31/15

Scope of work for other budget periods

BP2

- 8-inch diameter commercial-sized module fabrication
- Parts and equipment procurement
- 1 MW_e CO₂ capture system construction

BP3

- Site preparation and system installation at the NCCC
- Procure H3-1 solvent for the pilot testing
- Test system shake down at NCCC
- Parametric testing at NCCC performed prior to continuous testing

BP4

- Identify operational conditions for the continuous steady-state run at NCCC
- Run continuous steady-state tests for a minimum of two months
- Gather data necessary for further process scale-up
- Final Techno-Economic Analysis and EH&S study

BP2 estimated budget for construction

- Vendor quotes to come in 03/16/2015
- Prior instances show vendor quotes usually higher than original estimates

BP2 success criteria

- Initial HFC CO₂ capture testing with reduced gas flow and liquid flow using 20-cm (8-inch) diameter modules shows no leaks or other operational issues with the module and solvent;
- Target performance demonstrated with 20-cm (8-inch) diameter modules: ≥90% CO₂ removal rate, membrane contactor volumetric mass transfer coefficient ≥1.7 (sec)⁻¹, gas side pressure drop < 14 kPa (2 psi); and

Acknowledgements

Financial support

- DOE NETL José Figueroa
- ICCI Dr. Debalina Dasgupta