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Avalanche Statistics: Background 
• Under compression, the stress builds up until a weak spot slips, triggering other

weak spots to also slip in a slip avalanche visible as a stress drop or serration.
• Broad avalanche size distribution – predicted by a simple mean field model

to be scale invariant [1,2].

High Entropy Alloys (HEAs)
• New materials that contain five or more elements in the alloy, with 5%-35%

atomic percents, hence the name “high entropy”.
• These alloys have great tensile strengths at high temperatures.
• Applications in materials science, mechanical engineering, and medicine.

Methods

• Cut into tensile specimens with dimensions shown (quasi 2-dimensional)
• Pulled by an Instron 4505 at a constant strain rate and at temperatures ranging

from 300˚C to 700˚C.
• Data analysis: Extract complementary cumulative distribution function (CCDF)

of stress drop sizes.
• Stress-time behavior resembled Portevin-Le Chatelier (PLC) Effect

Portevin Le Chatelier (PLC) Effect
In the PLC effect stress drops are manifested in three types of slip bands:
1. Type A bands: continuously propagating with no spatial pattern of stress drops.
2. Type B bands have intermittent propagation with larger stress drops but with
irregular amplitudes.
3. Type C bands are defined as static bands that have large stress drops of equal
amplitude through the plastic deformation.

Our data on High Entropy Alloys Published data on other systems [3,4]

Complementary Cumulative Distribution 
Function with Fitted Power Law

Fitted power-law dependence C(S)~ S-(κ-1) , with κ = 1.6 ± 0.2
agrees with our mean field model prediction (κ =1.5) [1].
Power-law dependences are consistent with Type A band behavior.

Conclusions
Slowly deformed High Entropy Alloys at 300°C-700°C reflect the
PCL effect with band types A,B, and C. The serration statistics for
type A behavior follows a power law predicted by a simple model.
Next steps: (1) Examine if similar PLC behavior is observed in
other high entropy alloys and if it occurs at particular strain rates
and temperatures. (2) Model development.
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Overall Objective of this new 3 year program
(1) Provide the fundamental understanding of the serration behavior for high-entropy
alloys (HEAs) through mechanical experiments, theoretical analyses, and slip-avalanche
modeling.
(2) Reveal the deformation mechanism of HEAs and develop and test new serration-
based models to predict the mechanical performance for HEAs’ long-term fossil-energy
applications
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