

Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales

Prof. Vikas Tomar (PI) & Hongsuk Lee

School of Aeronautics and Astronautics, Purdue University

Prof. Jian Luo (co-PI), Naixie Zhou & Yuanyao Zhang

University of California, San Diego & Clemson University

>Thermodynamic Modelling

Define & quantify:

$$\lambda \equiv \frac{-\Delta \gamma}{\Delta G_{amorph}}$$

λ represents the thermodynamic tendency for grain boundaries (GBs) to disorder

Reference:

Luo, Journal of the American Ceramic Society 95: 2358 (2012)

Computed GB λ-Diagrams to Represent Levels of GB Disorder

Validations...

➤ To Predict (Coble) Creep?

Extending Bulk CalPhaD Methods to GBs (Prior Successful Studies)

➤ Preparing Nanocrystalline Ni and Ni-W Specimens for Mechanical Test

Temperature: 65 °C

Deposition time: 30 min to 2h

Chemicals	Weight(g/L)
NiSO ₄ .6H ₂ O	300
NiCl ₂ .6H ₂ O	45
H ₃ BO ₃	45
Saccharine	5
Sodium Lauryl Sulfonate (CH ₃ (CH ₂) ₁₁ OSO ₂ Na) 0.25	

Curren	t	Time (ms)	Peak (A/cm²)
Forwards	On	5	0.4
	off	15	

El-Sherik, et al., J of Materials Science 30, 5743 (1995)

> Free-Standing Nanocrystalline Ni Specimens

Current effort to make thicker specimens to fit the requirements for Purdue's *in-situ*, high-T, mechanical tests.

Nanocrystalline Ni-W alloy specimens (up to ~50 wt. % W) specimens were also successfully made.

➤ Sintered Nanocrystalline W Alloys

Grain Size: ~150 nm

~96% of the **Theoretical Density**

>Quantum mechanical calculation of GB Strength

[Vivek K. Gupta and et al., 2007]

* time step: 5 a.u., total 2000 steps

***** cutoff energy for wavefunction : 350 eV

❖ Nose-Hoover thermostat : 300K, 400K, 500K, 600K

* electronic fake mass for CPMD: 400 a.u.

❖ number of k-points for integration over Brillouin zone : 32x32x32

Becquart and et al., 2006

Nose and Shuichi, 1984

Hoover and William, 1985

Perdew and et al., 1996

Vanderbilt and David, 1990

Monkhorst and Pack., 1996

>Stress – strain relation

(1) Unsaturated Ni - W

Yield strength: at strain 4%,

First peak: at strain 12%

Yield strength and first peak's values have dependent on the Ni volume fraction.

Second peak: at strain 18%

The second peak's values are not depend on the Ni volume fraction.

Ultimate tensile strength: strain of 12~18%

The maximum tensile strength is not affected by Ni volume fraction for the unsaturated W-Ni.

(2) Saturated Ni - W

Yield strength: at strain 4%,

First peak: at strain 16%

Yield strength and first peak's values have dependent on the Ni volume fraction.

Second peak: at strain 24%

The second peak's values have the largest dependence on the Ni volume fraction.

Ultimate tensile strength: strain of 16~24%

The maximum tensile strength is not affected by Ni volume fraction for the saturated W-Ni.

> Phonon dispersion

> Prediction of peak tensile strength

$$\frac{\mathbf{T}_{\max}}{\mathbf{T}_{ideal}} = \frac{CE}{CD} \cdot \frac{1}{\Phi} \cdot f(t, n) \cdot g(w)$$

 T_{max} : Maximum tensile strength of W-Ni alloy

 T_{ideal} : Idealistic maximum tensile strength of W

Φ : Surface energy of W

CE: Atomic level cohesive energy of W

How does this prediction apply to continuum scale fracture?

>Continuum scale model

(2) Micro-scale model

>Material model of grains and GBs **Grain boundary** Grain 4.5 STRESS [GPa] STRESS [GPa] 16 20 16 20 24 STRAIN[%] STRAIN[%] Original Image FFT Filtered W V. Gupta et al, 2007] **Crack propagation** of GB 4.5E-5 0.013 0.015 0.018 **Time-step increment**

>Fracture toughness analysis

Fracture toughness in crack initiation

Fracture toughness inside the GB

[B. Gludovatz and et al., 2010]

▶Brittleness index of GBs

Effect of length-scale :
$$B = 3.3L^{-1/2}$$

$B^* = \frac{H}{K_c} \cdot \frac{1}{\alpha} \sqrt{L}$	$\alpha = 3.3$ for W-Ni
---	-------------------------

Nomenclature

	r= v
B*	brittleness index (no unit)
L	lengthscale (µm)
T	max. tensile strength (fracture strength)
H	hardness (GPa)
Kc	fracture toughness (MPa m^1/2)
t	GB thickness (µm)
n	Ni fraction (no unit)

- > Measurement of GB embrittlement has been obtained using the revised brittleness index.
- > This provides an absolute range of qualitative measurement to describe the brittleness without considering the length scale limitations.

>Crack propagation in different angled GBs

❖ Failure index: An index (between -1 and 1) to describe failure type, which can be either intergranular failure or trans-granular failure.

$$FI = a + b \frac{T_{GB}}{T_{Grain}} + c \theta^2$$
 $\begin{cases} a = 4.45 \\ b = -4.2 \\ c = -0.00024 \end{cases}$

Using the heavi-side function

$$H[FI] = \begin{cases} 1, & FI \ge 0 \\ -1, & FI < 0 \end{cases}$$

≻ Validation and Conclusion

- ➤ Perfect inter-granular failure has occurred.
- ➤ Contains crack path with maximum GB angle of 67°.
- ➤GB strength property can be predicted.

$$FI = a + b \frac{T_{GB}}{T_{Grain}} + c \theta^2$$

According to the failure index prediction, given microstructure has max. tensile strength ratio between GB and grain as $T_{GB} \le (0.803) \cdot T_{Grain}$.

✓ For various failed morphologies of polycrystalline W-Ni, GB's strength property can be predicted using the derived failure type criteria.

[Zbigniew Pedzich, 2012]

>Acknowledgement

❖ Support from DEO-NETL Grant DEFE0011291 is gratefully acknowledged.

Publications

- •Gan, M. and Tomar, V. (2010). "Temperature dependent multiscale creep strength of a class of polymer derived Si-C-O ceramics." Acta Materialia (submitted).
- •Gupta, V. K., Yoon, D.-H., Meyer Iii, H. M. and Luo, J. (2007a). "Thin intergranular films and solid-state activated sintering in nickel-doped tungsten." Acta Materialia 55(9): 3131-3142.
- •Gupta, V. K., Yoon, D. H., Meyer, H. M. and Luo, J. (2007b). "Thin intergranular films and solid-state activated sintering in nickel-doped tungsten." Acta Materialia 55(9): 3131-3142.
- •Lee, H. and Tomar, V. (2014). "Understanding the influence of grain boundary thickness variation on the mechanical strength of a nickel-doped tungsten grain boundary." International Journal of Plasticity 53: 135-147.
- Luo, J. and Shi, X. M. (2008). "Grain boundary disordering in binary alloys." Applied Physics Letters 92(10).
- •Shi, X. and Luo, J. (2011). "Developing grain boundary diagrams as a materials science tool: A case study of nickel-doped molybdenum." Physical Review B 84(1): 014105.
- •Shi, X. M. and Luo, J. (2009). "Grain boundary wetting and prewetting in Ni-doped Mo." Applied Physics Letters 94(25).
- ■Tomar, V. (2007). Multiscale simulation of dynamic fracture in polycrystalline SiC-Si 3 N 4 using a molecularly motivated cohesive finite element method. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (April 23-26, 2007) Honolulu, Hawaii, Paper No. AIAA-2007-2345.
- Tomar, V. (2008a). "Analyses of the role of grain boundaries in mesoscale dynamic fracture resistance of SiC-Si 3 N 4 intergranular nanocomposites." Eng. Fract. Mech. 75: 4501-4512.
- Tomar, V. (2008b). "Analyses of the role of the second phase SiC particles in microstructure dependent fracture resistance variation of SiC-Si 3 N 4 nanocomposites." Modelling Simul. Mater. Sci. Eng. 16: 035001.
- Tomar, V. (2008c). "Modeling of dynamic fracture and damage in 2-Dimensional trabecular bone microstructures using the cohesive finite element method." J. Biomech. Engg. 130(2): 021021.
- Tomar, V., Zhai, J. and Zhou, M. (2004). "Bounds for element size in a variable stiffness cohesive finite element model." Int. J. Num. Meth. Engg. 61: 1894-1920.
- ■Tomar, V. and Zhou, M. (2006). "Tension-compression strength asymmetry of nanocrystalline α -Fe 2 O 3 +fcc-Al ceramic-metal composites." Appl. Phys. Lett. 88: 233107 (233101-233103).
- ■Tomar, V. and Zhou, M. (2007). "Analyses of tensile deformation of nanocrystalline α -Fe 2 O 3 +fcc-Al composites using classical molecular dynamics." J. Mech. Phys. Solids 55 1053-1085.
- ■Zhai, J., Tomar, V. and Zhou, M. (2004). "Micromechanical modeling of dynamic fracture using the cohesive finite element method." J. Engg. Mat. Tech. 126: 179-191.