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Chemicals Weight(g/L)
NiSO4.6H2O 300
NiCl2.6H2O 45
H3BO3 45

Saccharine 5
Sodium Lauryl Sulfonate
(CH3(CH2)11OSO2Na)

0.25

Current Time 
(ms)

Peak
(A/cm2)

Forwards
On  5 0.4

off 15

Temperature: 65 ºC

Deposition time: 
30 min to 2h

Power Supplies
El-Sherik, et al., J of Materials  Science  30, 5743 (1995)

Preparing Nanocrystalline Ni and Ni-W Specimens 
for Mechanical Test



free-standing, mirror-like
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Uniform
Crack-free

Nanocrystalline 
Ni

Cu Substrate
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afterwards)

Grain Size (from the Scherrer
equation) is ~18 nm. Current effort to make thicker 

specimens to fit the requirements for 
Purdue’s in-situ, high-T, mechanical 

tests.

Nanocrystalline Ni-W alloy specimens 
(up to ~50 wt. % W) specimens were 

also successfully made.  

The image of the “apple” from iPhone

Free-Standing Nanocrystalline Ni Specimens



Grain Size: 
~150 nm

~96% of the 
Theoretical Density

Sintered Nanocrystalline W Alloys

[ Vivek K. Gupta and et al., 2007 ]
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Quantum mechanical calculation of GB Strength 



Yield strength: at strain 4%,       
First peak: at strain 12%
Yield strength and first peak’s values have dependent on the Ni volume fraction.
Second peak: at strain 18%
The second peak’s values are not depend on the Ni volume fraction.
Ultimate tensile strength : strain of 12~18%
The maximum tensile strength is not affected by Ni volume fraction for the unsaturated W-Ni. 

[1] At strain of 0.18

[2] At strain of 0.12

[3] At strain of 0.04

[1]
[2]

[3]

Stress – strain relation 
(1) Unsaturated Ni - W

 time step: 5 a.u. , total 2000 steps
 cutoff energy for wavefunction : 350 eV
 Nose-Hoover thermostat : 300K, 400K, 500K, 600K
 electronic fake mass for CPMD : 400 a.u.
 number of k-points for integration over Brillouin zone : 32x32x32

Becquart and et al., 2006

Perdew and et al., 1996

Nose and Shuichi, 1984

Hoover and William, 1985

Monkhorst and Pack., 1996

Vanderbilt and David, 1990



Yield strength: at strain 4%,      
First peak: at strain 16%
Yield strength and first peak’s values have dependent on the Ni volume fraction.
Second peak: at strain 24%
The second peak’s values have the largest dependence on the Ni volume fraction.
Ultimate tensile strength : strain of 16~24%
The maximum tensile strength is not affected by Ni volume fraction for the saturated W-Ni. 

[1][2]

[3]

[1] At strain of 0.24

[2] At strain of 0.16

[3] At strain of 0.04

(2) Saturated Ni - W
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Electron density distribution

MAX. STRESS 

DOS 

MAX. STRESS 

DOS 

Unsaturated Saturated
Electron density of states (f-orbital)

E
L

E
C

T
R

O
N

 D
E

N
SI

T
Y



Pure W

Unsaturated

Saturated

Pure W

Saturated

Unsaturated

Γ Η ΝΓ
Phonon dispersion

(ξξ0)

(ξ00)

Saturated

Unsaturated

Trend line

Trend line
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Prediction of peak tensile strength
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2nm
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[ V. Gupta et al, 2007 ]
135 μm

t = 10 μm

80 μm

Bi-granular model

Polycrystalline model

Continuum scale model
(1) Nano-scale model

(2) Micro-scale model
[ V. Gupta et al, 2007 ]

How does this prediction apply to continuum scale fracture?



Grain Grain boundary

Crack propagation 
of GB 

4.5E-5 0.013 0.015 0.018Time-step increment

Material model of grains and GBs

[ V. Gupta et al, 2007 ]



Fracture toughness inside the GBFracture toughness in crack initiation

W AKS-W WL NI-W

200 nm GB

400 nm GB

800 nm GB

200 nm GB
400 nm GB

800 nm GB

W : Tungsten
AKS-W : Potassium doped tungsten
WL : Tungsten with 1 wt% La2O3

[ B. Gludovatz and et al., 2010 ]

Fracture toughness analysis



Effect of length-scale  :

Brittleness index estimation

0.30.03 3

B = 3.3L-1/2

WC/Co [Evan and 
Charles, 1976]

WC [Lawn and 
Marshall, 1979]

0 3 2200 6000

Nomenclature
B* brittleness index (no unit)
L lengthscale (μm)
T max. tensile strength (fracture strength)
H hardness (GPa)
Kc fracture toughness (MPa m^1/2)
t GB thickness (μm)
p Ni fraction (no unit)

L
K
HB

c 
1*  α = 3.3 for W-Ni

Brittleness index of GBs

Measurement of GB embrittlement has been obtained using the revised brittleness index.
 This provides an absolute range of qualitative measurement to describe the brittleness 
without considering the length scale limitations.



θ = 90 ̊ θ = 80 ̊ θ = 70 ̊ θ = 60 ̊ θ = 50 ̊

θ = 40 ̊ θ = 30 ̊ θ = 20 ̊ θ = 10 ̊

GB angle from -90 to 90 degree

Inter-granular failure is represented as 1
Trans-granular failure is represented as -1

Crack propagation in different angled GBs

Failure index : An index (between -1 and 1) to 
describe failure type, which can be either inter-
granular failure or trans-granular failure.

a = 4.45
b = -4.2
c = -0.00024
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[ Zbigniew Pedzich, 2012 ]

Validation and Conclusion

Perfect inter-granular failure has occurred.
Contains crack path with maximum GB angle of 67 ̊. 
GB strength property can be predicted.

According to the failure index prediction, given 
microstructure has max. tensile strength ratio between 
GB and grain as

2c
T
TbaFI
Grain

GB 

  .803.0 GrainGB TT 

For various failed morphologies of polycrystalline 
W-Ni, GB’s strength property can be predicted 
using the derived failure type criteria.
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