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Objectives

* Focus on two critical welding challenges for creep-
resistant alloys for A-USC/USC

Reduced creep strength in the weld regions of CSEF (primary
focus)

Joining of dissimilar metals

* Develop a modeling tool to predict local creep
deformation and failure in welded structures in operation

Development of localized creep deformation measurement
(ORNL weld creep test)

Understand phase transformation and failure mechanism of
welded CSEF steels

Expand Integrated Computational Welding Engineering (ICWE)
modeling capability for creep performance

Develop practice solutions to address weld degradation and
predict life of welded structures.
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Outline

— Limitations in conventional cross-weld creep
testing

— Full-field creep deformation measurement
— Failure mechanism of welded CSEF steels

— Integrated Computational Welding Engineering
(ICWE) modeling capabillity for creep
performance

— Conclusions
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Type |V failure of Grade 91 steels

e Life of weldments shorter than

Base Metal.

— Type IV failure shortens the material life,

caused by weakened microstructure at

HAZ.
Type |, Weld metg

Type Il, Fusion line

Type Ill, CGHAZ

Type IV, FGHAZ/
ICHAZ
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Type 1V failure

Weld Joint Strength Reduction Factors (WSRF = o,q4/
Ohaen mera) 10r CSFE steels can be as low as 0.5 at ~600°C.

Due to localized deformation, conventional cross-weld testing has limitations
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Time to Fracture (h)

Minimum Creep Rate In Cross-Weld Creep
Testing
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Full Field Creep Strain Mapping i1s Needed

» To capture creep behaviors in different regions
— “True” weld minimum creep rate

* To obtain creep parameters in different regions
for modeling

* To validate model results

 To correlate creep deformation to microstructure
and mechanical properties
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Strain Distribution Measurement in Literature

Measuring indents distance by interrupted creep tests
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Our Approach: Digital Image Correlation (DIC)

* DIC, a full-field deformation measurement method can be applied to
measure strain distribution in a cross-weld sample

« “DIC is an optical method that employs tracking and image
registration techniques for accurate 2D and 3D measurements of

changes in images™
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Experimental Setup (Gleeble + DIC)

Gleeble system
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o Samples were painted with speckles for surface strain measurement
» Images was taken 1 image/60s for the first 12 hours and 1 image/300s
for the rest 78 hours.
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Creep Strain Evolution
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Significant strain concentration is shown after 30 hours of test
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Creep Strain Distribution Comparison

Standard heat treatment (1040/760/760), creep life:~500h
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Creep deformation evolution in different
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Traverse Creep Strain Distribution Comparison

Standard heat treatment (1040/760/760)
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Micro-hardness vs. Creep Strain
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Highest creep deformation region is not the weakest.
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Time to Fracture (h)

Minimum Creep Rate In Cross-Weld Creep

Testing
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Time to Fracture (h)

Minimum Creep Rate In Cross-Weld Creep
Testing
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Advantages of ORNL weld creep test

 Localized creep deformation measurement

Total creep strain after 90 hours
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 Local creep strain can be easily correlated to local microstructure
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Previous Study on Grade 91 Show Dispersion
of Fine Carbides is the Key

o Simulated HAZ heat profile
during high energy X-ray
diffraction scan

Table: Microstructure evolution at fine grain heat affected zone

Pre-weld temper

Weld (at FGHAZ) PWHT

Standard
(e.g. 760T/760)

Modified
(e.g. 650T/760)

®: M),Cq, ®: MX

X. Yu et al., Acta Materialia, vol. 61 (2013) p. 2194-2206.

In-situ Diffraction Study at SPring-8 showed carbide evolution in

FGHAZ

Does martensite sub-structure play a role in creep?
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Integrated Modeling of Materials, Processes
and Properties

e Pulse After the Pulse
| (’
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Non-destructive Cost modeling: Design for assembly Model automation for
evaluation & manufacturing technology transfer

Expend our capability to cross-weld creep modeling
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Modeling of Microstructure & Properties

High-fidelity microstructure modeling provides insight into microstructure
evolution and property heterogeneity of welds
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Initial FEA model

o 2-dimension axisymmetric model
* 4 distinct regions : WM, CGHAZ, FGHAZ, WM
 Power law creep

A MPa "h' n Young’'s modulus, GPa Yield stress, MPa Poisson’s ratio
WM 3-37x10°% 240 106 91 0-3
CGHAZ 6-97 x10~2° 10-2 99 135 0-3
FGHAZ 2-80 x10°2* 9-8 77 82 0-3
BM 376 x10 = 136 103 104 0-3

BM

FGHAZ CGHAZ

(w5

WM
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FEA model

e [nitial feasibly demonstration of ICWE model to
capture local creep deformation and failure in a
representative cross weld tensile specimen

CE, Max. In-Plane Principal
1.100
1.008
, 0.917
——- 0.825
0.733 FGHAZ | CGHAZ l WM

0.642
- 0.550
0.458
0.367
0.275
0.183
'E 0.092

0.000

Figure 1. Maximum in-plane creep strain in a cross-weld specimen
after 13000 hours creep. (CE is in-plane principal creep strain)

 Further develop and refine the creep testing
technigue. Design new sample geometry for
creep-microstructure correlation.
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Equivalent Strain Distribution

Equivalent creep strain
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Equivalent Stress Distribution
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Steep stress gradient at the interface between different regions.
Gradual properties transition need to be considered.
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Next step model development

* Include gradual mechanical properties transition from WM to
BM.

e Establish the relation between microstructure and creep
properties in different region of the weld.

 The mechanical properties used in the model, especially
creep properties of different regions need to be further re-
evaluated by experiments.
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Power Law Parameters Obtained by DIC

Strain rate can be extracted from each individual location
Creep constitutive equation parameters can be obtained
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Milestones

« 9/30/14 Demonstrate ICWE modeling capability to capture local creep deformation
and failure in a representative cross weld tensile v/

« 3/31/15 Improve and standardize the ORNL weld creep test procedure and
demonstrate its effectiveness to quantify the non-uniform creep deformation behavior
in Grade 91 steel weldments ¢/

e 6/30/15 Establish the relationship between the local microstructure/stress evolution
to creep deformation in weldments in Grade 91 steels using ORNL weld creep test
and in-situ neutron/synchrotron techniques. (depends on beam time allocation)

 9/30/15 Complete next stage of ICWE model development and demonstrate its
capability to predict local creep deformation and failure in ORNL weld creep test (on
track)
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Conclusions

« ORNL weld creep test has successfully been
used to measure localized creep deformation.

e Local strain iIs correlated to hardness and
microstructure.

 FEA model of cross-weld sample is being
established with consideration of gradual
properties change

« Stability of martensite substructure and higher
angle boundaries play an important role in Type
IV failure
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New Sample Geometry
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Dissimilar Metal Welds

316L 82 2.25Cr1Mo
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Dissimilar Metal Welds 314 82 2 25CrLMo
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Damage prediction

% OAK RIDGE NATIONAL LABORATORY
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY



Hot Tensile Testing

Original painting

0 Lagrange strain e, 0.05

necking

Improved painting

0 Lagrange strain e, 1
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