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Motivation

e Where are we going?
- Distributed, complex, hybrid systems

- Components with higher computational power

e \What do we need to account for?
- Thousands of sensors

- Failing sensors

- Dynamic and stochastic environments
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Key Challenge

How do we coordinate a very large number
of heterogeneous sensors and actuators so that they

collectively optimize a system objective function?
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Project Objectives

Develop performance metrics and algorithms for heterogeneous
sensor network.

Demonstrate scalability, reconfigurability, and robustness of
heterogeneous sensor network in simulation.
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Project Milestones

M1. new objective functions and evolutionary algorithms.

M2. new objective functions and reinforcement learning.

M3. scalability.
Ma4. reconfigurability and scalability.
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Project Milestones

M1. new objective functions and evolutionary algorithms. o
Objective 1

M2. new objective functions and reinforcement learning.

M3. scalability.

Objective 2
Ma4. reconfigurability and scalability. J
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Project Milestones

M1. new objective functions and evolutionary algorithms.
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Milestone 1

e Evolutionary algorithms

 New objective function
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Evolutionary Algorithms (Single Sensor)

Mutation

Fitness assignment

Selection
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What About Multiple Sensors?

e Extend evolutionary algorithms for multiagent systems.

e Cooperative coevolution: multiple parallel EAs.

e Fitness assignment is based on:
- Agent’s policy

- Collaborating agents’ policies
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Global Evaluation Functions

e Assign fitness using team performance

e Too much noise (not sensitive)

e Example: 100 agents
- 99 agents perform optimally

- 1 agent does nothing

- Fairly high system performance G(z)
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Local Evaluation Functions

e Assign fitness based on local measures

e Greedy agents (not aligned)

e Example: Tragedy of the Commons
- Agents overuse shared resources, and hurt system
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Desirable Fitness Function Properties

Global
Local
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Desirable Fitness Function Properties

Global

Local
?2?7?
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Difference Evaluation Functions

e Difference Evaluation Functions:

Di(2)=G(2)-G(z, + )
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Difference Evaluation Functions

e Difference Evaluation Functions:
Di(2)=G(z)-G(z; +¢)

e Second term: removes noise caused by other agents.
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Difference Evaluation Functions

e Difference Evaluation Functions:
Di(2)=G(z)-G(z; +¢)

e Second term: removes noise caused by other agents.

Sensitive v
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Difference Evaluation Functions

e Difference Evaluation Functions:
Di(2)=G(z)-G(z; +¢)

e Second term: removes noise caused by other agents.

Sensitive v

e Derivatives:
oD(z) _dG(z) 0G(z;+¢)
da  oa oa
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Difference Evaluation Functions

e Difference Evaluation Functions:
Di(2)=G(z)-G(z; +¢)

e Second term: removes noise caused by other agents.

Sensitive v

e Derivatives:
aDi(z)zaG(z) aG(z/ci)

oa, oa, B / oa,
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Difference Evaluation Functions

e Difference Evaluation Functions:
Di(2)=G(z)-G(z; +¢)

e Second term: removes noise caused by other agents.

Sensitive v

* Derivatives:

oD,(z) 0G(z) GG(z/ci)
oa,  oa  0a
oD,(z) 0G(z)

da,  0Oa
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Difference Evaluation Functions

e Difference Evaluation Functions:
Di(2)=G(z)-G(z; +¢)

e Second term: removes noise caused by other agents.

Sensitive v

* Derivatives:

oD,(z) 0G(z) GG(z/ci)
oa,  oa  0a

oD, (z2) _ 0G(2) Aligned v/
oa oa
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Approach

e Optimize sensor network performance with CCEAs

e Assign fitness using difference evaluations
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Defect Combination Problem

e Large set of disparate sensing devices
e Each device has noise and measurement error

* Which subset of devices should be activated for most accurate signal?

| Xisq may

G(z) =
Iiv=1 n;
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RanKkine Cycle Defect Combination Problem

e Apply DCP to each plant state in a Rankine cycle model
e Goal: attain accurate pressure and temperature measurements

e Agent feedback based on work and heat rates
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Results: 100 Sensors
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e Difference evaluations result in 9.1% of the error from G(z)
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Results: 1000 Sensors
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e Difference evaluations result in 1.2% of the error from G(z)
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Project Milestones

M2. new objective functions and reinforcement learning.
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Milestone 2

e Multiagent reinforcement learning

 New objective functions
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Multiagent Reinforcement Learning

* Multiagent Reinforcement Learning:
- Maintain expected value for each action

- Update expected value after taking action and receiving reward

Q(a) <« aR+(1-a)Q(a)
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Multiagent Reinforcement Learning

* Multiagent Reinforcement Learning:
- Maintain expected value for each action

- Update expected value after taking action and receiving reward

Q(a) <« aR+(1-a)Q(a)

* Intuition: actions with high rewards are reinforced
- Think Pavlov
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Multiagent Reinforcement Learning

* Multiagent Reinforcement Learning:
- Maintain expected value for each action

- Update expected value after taking action and receiving reward

Q(a) <« aR+(1-a)Q(a)

* Intuition: actions with high rewards are reinforced
- Think Pavlov

e Rewards:
- based on team’s performance

- same problems with alignment and sensitivity!
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New Agent Objective Functions

e Difference Evaluation Function:

Di(2)=G(2)-G(z, +¢)

Mitchell Colby, Kagan Tumer (PI), Oregon State University




New Agent Objective Functions

e Difference Evaluation Function:

Di(2)=G(2)-G(z, +¢)

e Expected Difference Evaluation Function:

ED,(2)=G(2)- 2, P(c;)G(z; +¢;)
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New Agent Objective Functions

e Difference Evaluation Function:

Di(2)=G(2)-G(z,; +¢)
e Expected Difference Evaluation Function:
ED.(z) = G(z)—zj P(c.)G(z_ +c;)

e Average Difference Evaluation Function:

AD,(1)=6(2)- -3 6z, +C)
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Approach

e Optimize sensor network performance with reinforcement learning
e Assign rewards using difference evaluation variants

e Rankine cycle DCP
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Results: 100 Agents
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Results: 1000 Agents
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Project Milestones

M3. scalability.
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Milestone 3

* Demonstrate system scalability

e What about 2000 sensors?
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Approach

e Optimize sensor network performance with reinforcement learning
e Assign fitness using difference evaluation variants

e Rankine cycle DCP
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Results: 2000 Agents
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Results: Scalability
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Project Milestones

Ma4. reconfigurability and scalability.
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Milestone 4

e Reconfigurability
- robustness to noise

- system reconfiguration after device failure

e Scalability
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Experiments

e Add noise to system

e Agent (sensor) failures
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Experiments

e Add noise to system
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1000 Agents, 10% Sensor Noise
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1000 Agents, 50% Sensor Noise
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Experiments

e Agent (sensor) failures
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1000 Agents, 10% Noise, 10% Failures

—e— Random

—_~
(@]
<
)
X
N—
c
S
B
>
c
(9]
=
<
e
®©
(@]
(0]
£
3
<

Episode

Oregon State

UNIVERSITY

Mitchell Colby, Kagan Tumer (PI), Oregon State University




1000 Agents, 10% Noise, 10% Failures

—e— Random

10% loss of sensors
leads to loss of
system performance
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1000 Agents, 10% Noise, 10% Failures
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2000 Agents, 50% Noise, 50% Failure
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Closing Remarks

e Difference objective functions improve system performance

e EAs vs RL: timescale

e Sensor networks:
- can reconfigure after large disruptions

- are robust to noise

- are extremely scalable
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