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Ultrasound Temperature Measurements

e SOS is temperature dependent in gases, liquids, and solids:
c=f(T).
¢ SOS can be obtained by measuring TOF of the US pulse:
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¢ For the uniform temperature: T=f" [—]
¢ Applications

— Insertion sensors is difficult or impossible to use

— Extreme environments

— Optical measurements not possible

Refractory Degradation
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Initial Installation

¢ Slag corrosion

* Mechanical shear

¢ Refractory liner
wear

During Gasification 3

Stages of refractory degradation [1]

Commercial Temperature Measurement

¢ Hardened sensors can withstand harsh environment longer

— Heavy sheathing makes such devices less sensitive to dynamic
changes in temperatures

Thermocouple protection
system for gasifier
application (2], Rosemount Sapphire TC
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Prof. Zhang Jiansheng: “Domestic TC survive ~1:2 weeks; Rosemount sapphire TC: ~4-6 weeks”

Ultrasound Temperature Measurements

e Key difficulty: When temperature changes along the path of
US propagation, the acoustic TOF measurements depend on
temperature distribution in a complex way:
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Deconvolution of the TOF measurement is an ill-posed problem.

* Parameterizations
— Assumption that temperature is constant:
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— Linear temperature distribution
— Heat transfer model
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Deconvolution of TOF Measurements
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+ Use heat transfer model

¢ Use multiple
transducers/receivers

Heyman et al.

¢ Produce multiple US —= T X T [ )
echoes Hanscombe and Richards




Direct US Measurements of Temperature
Distribution

Create multiple partial reflections that give information about
temperature distribution in different segments of the propagation path

Uhtrasound Pulse

S Transduscer/
Receiver

Methods to create partial reflections:
— Change in US impedance
— Scatterers
— Change in geometry

M. Skliar, K. Whitty, and A. Butterfield, Ultrasonic temperature
measurement device, US Patent 8,801,277 B2, 2014.
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¢ A: Steel shots were embedded
as ultrasound scatters to
produce partial reflection at the
midpoint of ultrasound
propagation path

¢ B:Two internal interfaces
obtained by sequentially casting
three layer of identical
formulation and allowing for a
partial curing before casting the
next layer

Experimental Setup
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Envelope of Ultrasound Waveform

Envelope of waveform

AW =[5, (0] =5, Os: ()
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A = -4 where analytic signal
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SOS vs. Temperature Calibration Curve
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¢ Linear fit SOS = SOS(T) is based on data for all four layers
¢ Shaded area shows 95% confidence interval
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% Non-uniform distribution
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ol ¢ Piecewise constant
¢ Piecewise linear
“ ¢ 2D thermal model
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High Temperature Experiments

— (AUl / ~* Heated by tube furnaces
= = l ? ®EMT e Temperatures changed in 50C
increments from 50 to 1150C

SOS vs. Temperature Calibration Curve

¢ Strong dependence on temperature
¢ 75% of measured temperatures have STD + 1°C
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SOS and Young’s modulus

For p-waves:
c - K+%G B E(1-v)
PV e Nplme-2n)

For p-waves in long rods:
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Comparison with TC Measurements:
Steady State and Dynamic Temperature
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Anisotropic Diffusion (Perona-Malik) Filter

Iteratively filter images using diffusion operator with
spatially varying diffusion coefficient:

;u(r,r) =V-[(D(r,7)Vu(r,7)], u(r,0)=1(r)
T

Common choices of D

Preserves high-contrast edges Favors wide regions

K
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k: gradient modulus threshold for conduction control
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Anisotropic Diffusion Using in Image Processing

a: Original image
b: Original plus Gaussian noise (6=0.1)
c: Filtered by anisotropic diffusion after 15 iterations.

C. Tsiotsios and M. Petrou, “On the choice of the parameters for anisotropic diffusion in image processing,”
Pattern recognition, vol. 46, no. 5, pp. 1369-1381, 2013.

1D Anisotropic Diffusion applied to envelope
%u(t,r):g[D(t,r)»%u(t,r)}
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Starting with the original envelope, u(t,0) = A(t) ,iterate to update the filtered values

u(t, 7+Az)=u(t, r)+Az-rhs

Application of Anisotropic Diffusion Filter
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Comparison of TOF timing errors

TOF Estimation Methods Cementitious Alumina Sample,
Sample, TOF TOF Differences (ns)
Differences (ns)

Peak of the waveform 920 30
Threshold of the waveform 100 25
Waveform Cross-correlation 72 26
Envelope Cross-correlation 56 26
Peak of filtered envelope 0 (1]

Cross-correlation of Filtered
Envelope 0 (1]

Small TOF errors in TOF translate into large
temperature errors: Alumina sample

TOF Estimation Methods | TOF Differences (ns) Temperature Differences
(20° Cas reference) (° C)

Peak of the waveform 30 50.47
Threshold of the waveform 25 42.30
Waveform Cross-correlation 26 43.94
Envelope Cross-correlation 26 43.94
Peak of filtered envelope 0 (1]
Cross-correlation of Filtered

Envelope 0 []

At20° C:

* The average TOF of 2” alumina waveguide is 24.2 ps.
* A TOF measurement error by 0.1% implies that the
temperature measurement error of 41 ° C.




Dynamic Temperature Measurements -
Application of anisotropic filter
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Pilot Scale Testing:
Down-flow Oxy-fuel Combustor

Coal feeder

Primary

. Maximum capacity: 100 kW
. Representative of full scale " Flue gas

[N

Secondary
units:
1. Self sustaining
combustion
2. Similar residence
times and
temperatures
. Similar particle and
flue gas species
concentrations
. Allows systematic variation
of operational parameters

Heat exchanger #1 - 8
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US Temperature Measurement System:
Components

Cooling
water
¥

Partial
reflectors.

Alumina
waveguide
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Refractory Wall

a

Mounting US waveguide

Tip of Ceramic Rod
cOplanaYnh Refractory Surface

Ceramic Rod, 1 OD, 12" Long
Wrapped with Ceramic Insulation.

Four partial reflections at 1", 2", 4" and 6”
from the hot distal end.

Cooling Water In

Cooling Jacket
p Only Outside the Furnace
* Cooling Water Out

All Thread

Transducer Retaining

Gap sufficient for 1/16” Thermocouples
Plate

Sealed with HT RTV Silicone
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US Measurement System: Installation
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Stable NG Combustion Transition from NG to Coal
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Grain growth

Significant deterioration of the ultrasound signal was observed
after long time operation in high temperature condition.

No heat treatment Short heat treatment Long heat treatment
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Conclusions

Noninvasive US measurements of temperature distribution in
solids at extreme conditions are possible

Can be used to measure conductive heat fluxes deep inside solids

Pilot-scale tests shows that the method provides accurate

continuous real-time in-situ measurements of temperature
distribution across the containment. Real time temperature
changes were captured during all relevant process changes.

Temperature distribution can be measured in multiple locations
Method can be used with existing and integrated into new units
Broadly applicable in energy conversion applications

Can be used to measure temperature distribution on a line,
surface, or volume

Moving forward

» Ready for early adoption and testing on industrial units: Gasifiers,
combustors, kilns, smelters, ...

* Can be used to measure temperature across multiple cross-sections of
containments, nozzles, and other components.

* New units can be designed to take better advantage of new capabilities
for achieve better efficiencies, flex-fuel capabilities, longer service life

» LOOKING FOR COMMERCIALIZATION PARTNERS

» Broadly applicable in energy, chemical, military, space, and other
applications with extreme conditions

» Environment does not have to be “extreme”

Temperature distributions on a line, surface, or volume can be measured!

Micro- and nano-scale applications
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