NETL's Crosscutting Research
Review Meeting

Award: DE-FE0011585
Developing novel multifunctional materials for
high-efficiency electrical energy storage

Feng-Yuan Zhang

Nanodynamics and High-Efficiency Lab for Propulsion and Power (NanoHELP)
Department of mechanical, aerospace and biomechanical engineering

UT SPACE INSTITUTE, UNIVERSITY OF TENNESSEE, KNOXVILLE

® U.S. DEPARTMENT OF w—TL
ENERGY eI ks




,;A\f-if”_‘,'”ifr&‘_
S 7
S e
<y — &)

[
5
L —
0 e
Lt B

Outline

S multifunctional thin : : :

-'uuu\/uu -




Transformer
stepup
voltage

Coal plant Long-distance Distribution
generates transmission of electricity
electricity lines to end users

» Electricity demand changes significantly with time
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» Electric grid often experiences interruptions, resulting in significant cost (> 80 Billions/year)
» Many of these interruptions may be mitigated by distributed energy storage approaches

Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan. Technical Report NREL/TP-6A2-47187, 2010
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Proton exchange membrane electrolyzer cells(PEMFCs) become more yagieLp
attractive for energy storage to promote grid modernization =

» Advantage of PEM Electrolyzer Cells
High energy efficiency

High energy density

Fast charging and discharging

High purity of H2 and O2 productions
Compact system design

Stackable: easily scale up/down
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» Challenges for widely application
» Performance
» Durability
» High cost of materials/manufacturing
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Liquid/Gas Diffusion Layers (LGDLs): Multiple Functions NﬁNbHELF

» LGDL: Located between flow channel -y
and catalyst-coated membrane

(catalyst layer +PEM) Anode

flow
channel

» Main functions:
»Transport reactant (liquid H,0) in and products

(H,/0,) out L|‘qU|d. /gas
diffusion
» Conduct electrons and heat to flow channels layer
» Maintain excellent interfacial contact and (LGDL)
conductivity
N Catalyst
» Enhancing capillary flow, conductivities g 12ver
and interfacial effects with controllable PEM

pore morphology are strongly desired
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Conventional materials, including SS, graphite, corroded at NANOHELP
high-potential and high-oxidative environments in PEMFCs A
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Corrosion elements (Iron) attacked both catalyst layers and NANDHELP
membrane, degraded the performance quickl E—
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Most conventional LGDLs are made of fibers: Titanium felts  NANGHELF
for anode and carbon fibers for cathode e
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» Advantages
— Good performance
— “Industry Standard”

» Disadvantages

— Thicker
B Guma  Onpae  LoDL. Lot — Random pore morphology /Pore control
Plate Distributor  Plate with . . .
Flow difficulties

Channel

— High Cost
— Fiber penetration into membrane
— Degradation of porosity and

' permeability
‘ L ‘ — Difficult to integrate with other parts
Anode
Graphite
Catalyst Plate with  Anode Anode
Cathode Coated Anode Flow Current End

Gasket Membrane Gasket  Channel  Distributor Plate




Solutions: titanium and thin LGDLs with well-tuned pore NANGHELP
parameters, smaller interfacial resistance and uniform distribution “="

» Challenges: need multifunctional LGDLs with
minimum losses of transport, electrical and
thermal properties combined with high
durability in oxidizing and reducing
environments.

» Thinner (<0.05 mm)

>(_Jontrollable pore parameters, including pore
size, shapes, porosity

> Smaller resistances

> Better thermal/electric distribution

> More catalyst utilizations

» Easy surface modification/component

integration




Mask patterned wet etching: low-cost and well-controllable NHNUH;'LP
fabrication process for a thin LGDL
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Thin LGDLs have been successfully fabricated with different NﬁNbHEL“F
design parameters =

ez-155347 20.0kV 7.1mm x35 SE(M)

ez-155357 20.0kV 10.6mm x100 SE(M) 500um
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Thin LGDLs were tested in a standard electrolyzer cell NBNGHELF
with test station and control system R—
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Excellent performance is obtained with developed thin NANOHELP

LGDLs: about 10 % of efficiency improvement -
1.9 —=— Ti thin film LGDL

—a—Ti felt LGDL
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Efficiency is improved from 77% to 87% at a current density of 2.0 A/cm?
Thickness is reduced from 350 um to 25 um
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Excellent performance is obtained with developed thin NANGHE

LP
LGDLs: about 10 % of efficiency improvement N
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*E. B. Anderson, “Latest Advancements in PEM Electrolysis,” Technical Forum of
Hydrogen-Fuel Cells-Batteries, April, 2014

14



Thin and well-tunable LGDLs with straight pores make it NANGHELP
possible to In-situ investigate 3-phase reactions and interfaces =

» The electrochemical reaction sites on CLs are next to the center part of PEM and
located behind LGDLs, current distributor with flow channel and end plate

» LGDLs are typically made of titanium fibers in random pore morphology
Interconnected and complicated structures in the current LGDLSs

» Current distributors are made from titanium to resist the high potential and
oxidative environment
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In-situ visualization with developments of novel LGDLSs, NBNGHELF
transparent PEMFCs and high-speed/microscale system —

» Fabricate well-tunable transport LGDLs with straight pores
» Design a transparent PEM Electrolyzer Cell

» Develop a high-speed and micro-scale visualization system (HMVS)
o W




First-ever revealing the true nature of multiphase interfacial electrochemical  navgHEL P
reactions in micro porescale with microsecond time resolution o

» Speed: up to 1,400, 000 fps ( better than 0.8 s time resolution)

In-situ micro reaction - oxygen bubble generation from water (10,000 fps)
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Discovery: only small portion of catalyst function as designed  NANGHELP
and great opportunity for cost reduction =
> Reactions at anode side:  2H,0 2250, + 4H* + e

e

k.
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catalyst

» Reactions at cathode side: A4H* + 4e~ —2H,




Two phase model coupled with comprehensive performance
analysis for a PEM electrolyzer cell has been developed S

» Gas/liquid two-phase transport equations
Oxygen transport: LGDL CL PEM

o DR R S R R

o,/ Po,

Vpo, | = No,

Liquid water transport:
KkHZO
#Hzo/PHzo

VPHZO = NHZO

Capillary pressure:
e\1/2
Pc = Po, — PH,0 =J(s) X ocos6

T

1.417(1 — s) — 2.120(1 — s)? + 1.263(1 — 5)3,

0 < 6 <90° hydrophilic

1.417s — 2.120s* + 1.263s>, | gyerett’s function
90° < 8 < 180°, hydrophobic

J(s) =
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The electrochemical voltage consists of open circuit voltage, NHNUHELP

activation, diffusion overpotential and ohmic loss =

(2)Flow channel  (3) LGDL

= X (1) Plate

> Electrochemical performance
Total potential:

V="V + Vaee + I/aliff + Vonm

Open circuit voltage:

RT  (ay al>
Voen =V, 1 2 2
ocv 0 + 7F n( aHZO

Activation and diffusion overpotential:

RT, Jj Co,m RT, J Cuym
|4 Viier = 1 = + I ;
act T Vairf a,F n <st Co,mo acF n(SjO CHzmo

Ohmic loss:

Vonm = (Rplate + Rigpr + Rpem + Rinerface)jA




Liquid saturation distribution in the LGDL NN Lf

The liguid water saturation distribution along the LGDL thickness direction at
different current density.
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Smaller contact angles will decrease the flow resistance NANGHELP

and result in better performance and higher efficiency =
» Effects of contact angle on the liquid > Effects of contact angle on the cell
saturation distribution inside LGDL performance and efficiency
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Thinner LGDLs and membranes will decrease the NANDHELP
ohmic/transport resistances and enhance the performance =~

> Effects of LGDL thickness on the cell > Effects of PEM thickness on the cell

performance and efficiency performance and efficiency
T 1 1
LGDL thickness effects : [ 21 PEM thickness effects
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Future work: Optimization of LGDLs, surface treatment and NANGHELF
durability test of LGDLSs and further modeling development =

» Optimization of pore parameters _

> Porosity
> Pore size
» Thickness

> Surface treatments

» Enhance two-phase transport
» Minimize surface contact resistance
» Improve durability and corrosion resistance

> Validating two-phase model for thin/well-tunable LGDLs

> Validate with the new experimental data.
» Modeling the effects of LGDL porosity and pore size
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Exploring microscale and multiphase reactions with optimization NHNUHELP
of pore scale interfacial effects and two-phase flow =

» Multiphase boundary interfacial effects
play critical roles in electrochemical
devices, such as electrolyzers, fuel cells,
and flow batteries.

» For instance, anode reaction in
electrolyzers only occurs at multi-
Interfaces:

catalyst
2H,0 —— 0, + 4H* + 4e~
» 3-phase & multi-materials co-exist:

> Solid phases: catalyst, conductors for
electrons, and conductors for protons

> Liquid phase: water

» Gas phase: Oxygen at anode/ Hydrogen at
cathode

Optimization of pore scale interfacial effects and two-phase flow will become critical
) 25




Additive manufacturing (3d printing) from CAD Model to NANHELP
physical part: Faster and cheaper =

> electron beam melting technology: powder bed additive manufacturing

> titaﬂitém powder materials are spread into a 50-micrometer thin layer and
melte

» Shorten manufacturing cycles from design to products
» Reducing the material scraps
» Easily integrating components

Directly from CAD model to virtually slice, layer-by-layer path, physical part
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