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Motivation – need for wireless strain sensors 

 Optimal design

 Feedback control

 Health monitoring

 Temperature
 Heat flex

 Pressure
 Stress
 Strain
 Viscosity
 ………

Sensors

Turbine 
performance

o Power generation

o Aero propulsion 

University of Central Florida, Orlando, FL 32816April 28, 2015



4

Motivation – wireless passive strain sensors 

 Parts subjected to severe strain/stress in extreme environments

High temperatures – need passive 

Moving parts/hidden areas – need wireless
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Senor Type Single Transport Sensing Mechanisms

Temperature‐
related sensing

Wired Semiconducting

Wireless Temperature‐dependent permittivity

Stress/strain‐
related sensing

Wired Piezoresistivity

Wireless Piezodielectricity

Difficult to develop

Sensor Classification 
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 Overall Objective 
Develop RF resonator-based wireless passive polymer-derived 

ceramic strain/stress sensors

Passive Ceramic Sensor

Objectives

Passive Ceramic Sensor

f0(S)

 Scientific Goals
 Develop piezo-dielectric polymer-derived ceramics (pd-PDCs)
 Design and fabricate resonator sensors
 Characterize the sensors in extreme environments
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Starting
materials

Polymer
precursor

Infusible
preceramic

network

Amorphous
Ceramics

Chemical

synthesis

Cross   linking

Pyrolysis

800-1000oC

Material development – polymer-derived ceramics
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Fundamentally Different from Traditional Ceramics
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 Macro-scale amorphous
- No X-ray diffraction

 Nano-scale heterogeneity – nanodomain structure
- Two phases: amorphous matrix (AM) and disordered free carbon (FC)

- Interface (area) between different phases

- Free volume

o Distribution of two phases: 
 Both continuous
 AM continuous
 FC continuous

o Possible phase separation within AM phase

 Atomic/molecular scale
- Large amount of point defects (dangling bonds)

- Doping effect

- Residue stresses

Matrix

Free carbon
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 Excellent creep resistance 

- Creep resistance of PDCs can be higher than polycrystalline SiC/Si3N4

 Excellent thermal stability 

- PDCs can be stable up to 1800-2200oC against decomposition and crystalization

 Excellent oxidation/corrosion resistance

a ba bb

- Oxidation rate of PDCs is more than 10 times lower than conventional 
silicon based materials

- Corrosion rate of PDCs is 
about 10 times lower than 
silicon based materials

- Excellent strength retention  

 Excellent high-temperature properties

Suitable for high-temperature applications
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 Flexible microfabrication capability
UV light

mask

Solidified 
Ceraset

UV light

mask

Solidified 
Ceraset

Double-layer

 Lithography
 Micro-casting
 Direct writing/printing
 Spin-on thin/thick film
 Mechanical machining
 FIB nano-machining200 m

3mm3mm
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oAmorphous semiconducting behavior at high temperatures –
excellent for wired temperature-related sensing
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oHuge gauge factor – excellent for wired stress/strain-related sensing

4-loading/unloading cycles

k  dR / R
d
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oTemperature dependent permittivity – excellent for wireless 

temperature-related sensing
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 Material system: SiAlCN

 Polysilazane (VL20): main precursor

 Phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide (819): the photon initiator

for UV curing

 Aluminum-tri-sec-butoxide (ASB): source for Al

 Poly (melamine-co-formaldehyde) acrylated solution (PVN): additional source 

for N

 Methacrylic Acid (MA): for enhancing the effectiveness of UV curing
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 Material system: SiAlCN

Name MA (wt%) ASB
(wt%) 

819 
(wt%)

VL20 
(wt%)

PVN 
(wt%)

S-1 2 5 5 78 10 

S-2 2 5 5 68 20 

S-3 2 5 5 58 30 

S-4 5 5 0 90 0

S-5 0 1 0 99 0

S-6 0 5 0 95 0

S-7 0 10 0 90 0

S-8 2 1 0 97 0

Key: lowest dielectric loss
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Name Dielectric 
constant

Dielectric 
loss

Frequency
(GHz)

S-1 4.87 0.042 9.767

S-2 6.66 0.083 9.743

S-3 7.40 0.21 9.718

S-4 4.45 0.0085 8.826

S-5 3.6 0.0045 9.028

S-6 3.55 0.0046 9.221

S-7 3.85 0.0046 9.337

S-8 4.8 0.0045 9.0035

 Dielectric properties of SiAlCN at ~ 10 GHz

 819 can cause drastic increase in 
dielectric loss

 Other additives have less effect
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 Piezodielectricity at 1 MHz

245

250

255

260

265

270

275

0.00 2.00 4.00 6.00 8.00 10.00

Pe
rm

itt
iv

ity

Stress (MPa)



18

Sensor design and fabrication

Wc: the width of the PDC rectangular

Lc: the length of the PDC rectangular

H: the thickness of the PDC rectangular

Wa: the width of the slot

La: the length of the slot

Xa: the distance of the slot from the edge

University of Central Florida, Orlando, FL 32816April 28, 2015

Low dielectric loss and high Q factor
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 The effect of the rectangualar dimensions

Wc = 8 mm; Lc = 16 mm; H = 1 mm
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 The effect of the slot dimensions

La = 6 mm

Wa = 0.4 mm

Xa = 1.0 mm
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 Sensor fabrication
Material: SiAlCN (1%ASB+2%MA+97%VL20)

Fabrication procedure:
o Cross-link the precursor synthesized in our lab.
o Ball-milling the cross-linked precursor to a fine powder of ～1um scale
o Compress the powder into a disk of 1 inch in diameter and 2-3 mm in 

thickness using a die under a uniaxial pressure of 50 MPa.
o Further treat the disk under isostatic pressure of 200 MPa at room 

temperature.
o Pyrolyzed the disk at 1000oC for 4 hrs using a heating rate of 1oC/min.
o Machine the pyrolyzed ceramic disk into the final dimension of the sensor.
o Make electrode on the final sensor.

Wc = 8 mm; Lc = 16 mm; H = 1 mm; Pt thickness > 20 um
Wa = 0.4 mm; La = 6 mm; Xa = 1 mm

Calculated sensor feature: 
 Resonant frequency = 9.58 GHz; 
 Q-factor will be 383

Final sensor feature:
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Sensor characterization (on going)



Summary
 Polymer-derived ceramics possess necessary properties for making high-

temperature sensors for turbine applications

 Developed piezodielectric SiAlCN ceramics for wireless passive 
strain/stress sensors for high-temperature applications.

 A wireless passive strain/stress sensor based-on RF cavity resonator has 
been designed and fabricated.

 The sensor testing is on going.
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