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• Develop sensors that measure process 

parameters 

– Gasifiers -- harsh fuel, oxidizer and 

combustion product environment 

– High Temperature (750-1600 C) 

– High Pressure (up to 1000 psi) 

 

• Develop sensors that are wireless and self-

powered 

– Generate their own energy to operate and 

wirelessly transmit data 

– Avoids wires that may be a reliability or 

inconvenience concern 
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HEAT Sensor Project Goal 
Harsh Environment Adaptable Thermionics 

Source: GE Energy 

Source: GE Energy 

Thermocouple protection system 

 for gasifiers (NETL website) 



• Use Thermionic Materials as Sensors 

– Heat induced flow of electrons from a metal surface 

– Thermionic emissions occur at high temperature without 

need for external heater source 

• Thermionic Technology 
– Diodes, Triodes, Tetrodes, etc… 

– Amplifier, Oscillators,  Power Generation 
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HEAT Sensor Project Concept 

The 1946 ENIAC computer used 17,468 vacuum 

tubes and consumed 150 kW of power 

70-watt tube audio amplifier selling for US$2,680[31] in 2011, about 

10 times the price of a comparable model using transistors.[32] 

http://en.wikipedia.org/wiki/File:ENIAC_Penn2.jpg
http://en.wikipedia.org/wiki/ENIAC
http://en.wikipedia.org/wiki/Vacuum_tube#cite_note-31
http://en.wikipedia.org/wiki/Vacuum_tube#cite_note-32


•  Model and Pattern Thin Film Thermionic Layers 

•  Develop Experimental System 

•  Develop High Temperature Hermetic Package 
– Use High Temperature Co-Fired Ceramics (99.9% pure alumina) 

– Adhesive and Hermetic Sealant Development 

•  Thermionic Measurements 
– Temperature Sensor 

– Pressure Sensor 

– Circuits and Power Generation 

 
 

PARC  |  4 

HEAT Sensor Project Plan 



Richardson’s Law 

 

Basic Temperature Sensor 
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Pressure Sensor 

Simulation 
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Autonomous Power & Wireless 
Transmission 

Wireless Transmission 

Circuit Example 
Power Generation Concept 

50 mA/mm2 max current  
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Vacuum Tubes vs HEATS Platform 

Characteristics Vacuum Tubes HEATS 

Platform 

Operating vacuum level Similar Similar 

Package hermetic sealing 

temperature 

<300 C > 1300 C 

Package operating temperature <300 C > 1300 C 

Package dimensions ~ cm  ~ mm 



• Encouraging initial results 

using Alumina Paste 
– Fired @ 1350C 

– <3.4e-4 mbar base pressure 

– Our target is <1e-4 mbar 

 

• Planned Improvements 
– Explore application method and 

firing procedure 

– Seal area and structure 

modification 

– Decrease  paste particle size  

– Add CTE matched high 

temperature glass filler 
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Hermetic Seal Development 

Sample 

Connection 

Port 



• Important parameters 

– CTE match (thin glue line) 

– Need melting component to 

fill in pores (sealing 

temperature) 

– Surface wettability during 

curing (additives and 

surface preparation) 

– Structural thermal stability of 

substrates 

• Secondary importance 

– Paste particle size 

– Drying temperature 
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Hermetic Seal Development 

500 µm 

Disk 

Tube 

Slight separation 

between fired 

excess paste blob 

and disk. 

Paste, fired at 

1500°C. 

No obvious 

grain growth 

A few obvious 

cracks 

Sample after sealing but before any 

drying 

Sample after drying (<300 C bake) 

Delamination is clearly visible 
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Hermeticity Testing  

• Multiple paste formulations tested by measuring Tungsten oxidation weight gain 

– Package tungsten powder using sealing paste 

– Bake in air for set period of time 

• Failed paste formulations showed oxidation of W (yellow) and volume expansion 

• Promising paste formulation showed minimal mass gain at prolonged 1200C temperature soaks 

– 1.463 gr W initially 

– 7 mg gain after 130 hrs 

– ~ 1 e-5  bar cc/s ; Spec -- < 1e-7 bar cc/s 

• 1mm thick HTCC plates had some curvature after curing 

 



• Used single layer alumina plate to 

minimize plate curvature during curing 

• Soaked for over 2500 hrs at 1300C.    

• Cycled to room temperature 3x and 

repeatedly cycled between 1000C to 

1300C.    

• Outgassing was further reduced by an 

high temperature cycle of 1400C.   
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Hermeticity Testing 

Milestone Specification 



• Thermionic material oxidized  

• Determined background vacuum in MTI tube furnace was too high 

– Getters did not prevent oxidation 

– Reduced current emissions observed 

• Could not hermetically seal a package without oxidation of the thermionic 

material  
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Thermionic Oxygen Poisoning 



• Converted bell jar evaporator for thermionic testing 

• Background pressure – 1e-7 mbar vs 1e-4 mbar for MTI furnace 

• Temperature control up to 1300C for now (will test to 1600C in future) 
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New Test Apparatus 

  



PARC  |  15 

Data 
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Data – Theory vs Actual 
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µA @1010C
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Fitted values:  Wf= 2.866 eV,  const= 39 A/cm^2/K^2 

Current limited by emission (Richardson-Dushman). 

Cathode area= 1.77cm^2 , gap= 0.15 cm 



PARC  |  17 

Repeatibility 
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Repeatibility 
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Temperature Measurement 
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Filled markers : device warming 

Un-filled markers : device cooling 

Re-heated after weekend 
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Key Milestones 

Device 

Interconnect 

Device Vacuum Thermionic 

Material 

Milestone 3  

Hermetic Seal @ Temp 

None None None 

Milestone 4  

Temperature Sensor 

Zirconia wire Active pumping La 

Milestone 6  

Pressure Sensor 

Zirconia wire Active pumping La 

Milestone 9a 

Self powered and 

wireless 

Zirconia wire Active pumping La, BaO 

Milestone 9b 

Self powered and 

wireless 

None Self-contained 

vacuum with getter 

La, BaO 


