2014 NETL Crosscutting Research Review Meeting Sheraton Station Square Hotel Pittsburgh, PA

EMBEDDED ACTIVE FIBER OPTIC SENSING NETWORK FOR STRUCTURAL HEALTH MONITORING IN HARSH ENVIRONMENTS

DE-FE0007405

Zhihao Yu, Anbo Wang Virginia Tech Center for Photonics Technology Blacksburg, VA 24061 zhyu@vt.edu, awang@vt.edu http://photonics.ece.vt.edu/

<u>Outline</u>

- Motivation and Objectives
- Background and Fundamental Technology
- Project Progress
- Summary

MOTIVATION AND OBJECTIVES

Motivation

- Health condition monitoring of key materials and structures can ensure safety and minimize system shutdowns.
- Challenges from a new set of extreme physical and chemical conditions:
 - Ultrahigh temperature
 - High pressure
 - Severe chemical corrosion

Impacts

- Currently available methods:
 - X-ray defect detection
 - Ultrasonic tomography
 - Remote techniques using piezoelectric transducers
- Advantage of new fiber-based technology:
 - Can be attached or embedded
 - Multi-parameters monitoring with single sensor
 - High temperature
 - Remote, no on-site power required
 - Potential of multiplexing

Project Overview & Objectives

- Three-year project beginning 4/1/2013.
- Objectives:
 - Develop a fiber-based multi-parameter (temperature, strain, corrosion, and defects) health monitoring sensor
 - Develop the attachment or embedment technology of the sensor to steel
 - Demonstrate the feasibility of sensor multiplexing

BACKGROUND AND FUNDAMENTAL TECHNOLOGY

Ultrasonic Non-Destructive Evaluation (NDE)

8

• Widely used and versatile technique of material defect detection.

<u>Active Fiber-Optic Non-</u> <u>Destructive Evaluation (FO-NDE)</u>

- An acoustic wave is generated to detected defects optically in a fiber.
- A Fiber Bragg Grating (FBG) is used to detect the acoustic signal modulated by the material as well as other parameters.

PROJECT PROGRESS

Computational Modeling

- A 2D computational model was built to simulate acoustic propagation in a bulk material.
- Cracks and corrosions were placed on the block to simulate acoustic responses of the system.

Acoustic Wave Simulation

- Elastic wave propagation model
- Simulated
 - P-wave
 - S-wave
 - Surface wave
 - Reflection
- Demonstrated acoustic propagation in a specimen with crack and corrosion

Crack Detection

• Crack-induced acoustic signal

Corrosion Detection

Corrosion induced acoustic signal change

Sensor Element Design

- Two acoustic generation candidates
 - Laser Induced Plasma (LIP)
 - Erbium-Doped Fiber (EDF)

Surface attached LIP& FBG based FO-NDE element

Surface attached EDF& FBG based FO-NDE element

LIP Based Sensor Design

- Metal film embedded in multimode fiber
- Confined LIP
- Multiplexing through partial absorption on each element
- Pro: high acoustic signal level
- Con: dual fiber system, complicated sensor fabrication

LIP Based Acoustic Generator

Fabrication

- A. Well drilled on fiber end;
- B. Well filled with platinum using Focused Ion Beam (FIB);
- C. Microscope image;
- D. Splicing;
- E. Completed unit.

LIP Based Sensor Preliminary Test

Strong acoustic wave generated by single unit in water

EDF Based Sensor Design

- Using the absorption and thermal relaxing of EDF for acoustic generation
- Pro: easier fabrication, single fiber structure
- Con: weak acoustic signal

EDF Based System Design

 Wavelength Division Multiplexing (WDM) technique for signal demodulation in a multiplexed system

Next Steps

- Develop of both LIP and EDF based acoustic generation units, and compare their performance and choose one for the final scheme
- Fabricate and demonstrate a complete single FO-NDE unit
- Develop fiber sensor embedding technique in target metal
- Demonstrate sensor unit multiplexing

SUMMARY

Task Status

- 1. Project Management & Planning
- 2. Acoustic Generation, Propagation and Detection Modeling
- 3. Sensor Element Design
- 4. Demonstrate FO-NDE Element
- 5. Design, Implement and Demonstrate Sensor Network
- 6. Test Sensor in the Simulated Environment
- 7. Prepare Final Report

Project Progress Summary

THE END

