Computational and Experimental Development of Novel High Temperature Alloys

Matthew J. Kramer. Pratik K. Ray, Tyler R. Bell Gaoyuan Ouyang and Mufit Akinc

This work was supported by the **DOE-FE (AMR program)** through Ames Laboratory contract no. DE-AC02-07CH11358

The High Temperature challenge

Higher temperatures → Higher energy efficiencies

Challenges -

- High T oxidation
- Moisture
- Creep and high T deformation
- Toughness & manufacturability
- Highly variable coal combustion environments

- Ni based alloys approaching limits
- Silicides form a borosilicate scale susceptible to moisture

The problem:

- Are there effective ways of tweaking existing systems?
- Can we develop a new alloy system?

Conceptual approach

Finer screening

Alloy architecture

Key requirements

- A. High melting temperatures
- B. Adequate strength and toughness
- C. Good oxidation resistance

How do we develop stronger, oxidation resistant alloys that operate at very high temperatures?

Alloy selection: a coarse-grained approach

Estimation of formation enthalpies (ternary alloys)

$$\Delta H = \phi_1 \Delta H_{AB}(\alpha) + \phi_2 \Delta H_{BC}(\beta) + \phi_3 \Delta H_{CA}(\gamma)$$

Boundary conditions for energy minimization

$$\begin{split} &\sum_{i=1}^{3} \phi_i = 1 \\ &\phi_1 \alpha + \phi_3 (1 - \gamma) = x_A \\ &\phi_2 \beta + \phi_1 (1 - \alpha) = x_B \\ &\phi_3 \gamma + \phi_2 (1 - \beta) = x_C \end{split}$$

# of elements	Combinations
3	3160
4	82160
5	1.58 x 10 ⁶
6	2.40 x 10 ⁷

Semi-empirical thermodynamics: the initial screen

Ray et.al., J. Alloys Comp 489 (2010) 357

Alloy selection: the NiAl-Mo system

3	4	5	6	7	8	9	10	11
Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu
1539	1670	1902	1857	1244	1540	1495	1453	1083
Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag
1526	1852	2467	2617	2200	2250	1963	1552	961
La	Hf	Ta	W	Re	Os	<u>lr</u>	Pt	Au
920	2227	3014	3407	3180	3027	2443	1772	1065

Requisites

- High temperature oxidation resistance
- High thermal stability

High melting + poor oxidation

Low melting + good oxidation

Mix of oxidation and melting & possibly creep strength

Haenschke et.al., J. Phys. 240(2010) 012063 Bei & George, Acta Mater 53(2005) 69

Mo

Processing and microstructures

Arc-melted

Directionally solidified

Significance of Mo distribution – Mo helps in crack deflection

Liquid phase sintered

Fracture Toughness

- Drop-cast and DS 15 atom% Mo alloy
- Fracture toughness ~ 9.4 MPa.m^{1/2}
 - Jamie Kruzic, OSU
- Fracture toughness of NiAl ~ 5 MPa.m^{1/2}
- Fracture toughness of Mo-Si-B alloys ~ 12
 MPa m^{1/2}
- DS eutectic Mo-Ni-Al alloy has shown
 ~10⁷ decrease in creep rate

Mo dendrites pull out, indicating its effect on the toughening mechanism in this alloy.

The challenge: Optimize the microstructure of the base alloy in order to optimize the strength and toughness of the alloy.

Composition optimization – Oxidation mitigation

Isothermal oxidation at 1200°C

Composition used for rest of the presentation: Mo₂₀Ni₄₀Al₄₀

The effect of temperature

Base alloy 1200°C X100 100mm 12 30 BEC 20kU

Cu plating

time (hours)

Oxide scale

Oxidized surfaces

1000 °C

1100 °C

1200 °C

Ray et.al., manuscript under prep

Oxidation time: 30 minutes

As temperature increases, NiMoO₄ regions grow larger, but they start disappearing above 1100 °C

NiAl₂O₄ and NiO seem to predominate above 1100 °C

Oxidation possibly results in a multilayered scale

Stability of NiMoO₄

Phase transformation in NiMoO₄

Heating
$$\alpha \longrightarrow \beta$$
 @ 602 °C

Cooling
$$\beta \longrightarrow \alpha$$
 @ 250 °C

Volume change associated with transformation on cooling ~ 20%

Massive volume change is responsible for spallation – hence its only the layers containing NiMoO₄ that will spall off

Consider the oxidation of a Mo rich region of the surface.

Ray et.al., article under preparation

Consider the oxidation of a Mo rich region of the surface.

Initial oxidation of Mo results in the formation of MoO₃ which later volatilizes.

 $Mo + 3/2 O_2 \rightarrow MoO_3$

Ray et.al., article under preparation

Consider the oxidation of a Mo rich region of the surface.

Initial oxidation of Mo results in the formation of MoO₃ which later volatilizes.

$$Mo + 3/2 O_2 \rightarrow MoO_3$$

NiMoO₄ forms at the interface along with alumina

$$2MoO_3 + 2NiAl + 3/2O_2 \rightarrow 2NiMoO_4 + Al_2O_3$$

Ray et.al., article under preparation

NiMoO₄ dissociates progressively

$$NiMoO_4 \rightarrow NiO + MoO_3$$

The NiO reacts with the underlying Al_2O_3 to form the spinel interphase

$$NiO + Al_2O_3 \rightarrow NiAl_2O_4$$

Ray et.al., article under preparation

Consider the oxidation of a Mo rich region of the surface.

Initial oxidation of Mo results in the formation of MoO₃ which later volatilizes.

$$Mo + 3/2 O_2 \rightarrow MoO_3$$

NiMoO₄ forms at the interface along with alumina

$$2MoO_3 + 2NiAl + 3/2O_2 \rightarrow 2NiMoO_4 + Al_2O_3$$

Ray et.al., article under preparation

Designing microstructural gradients

The coating should be:

- -Oxidation Resistant
- -Compatible with the base alloy

By using β-NiAl as a coating, on top of the MoNiAl alloy, chemical gradients are decreased, which can prolong the life of the coating

Designing microstructural gradients

The two phase (Mo)+NiAl microstructure of the cast alloy necessitates a two step coating method.

Ni / Al coating

In order to form the β -NiAl coating, Ni has to be deposited on the surface to avoid formation of Al-Mo intermetallics.

Annealed coating

Easily controllable process to adjust amount of Al deposited to form the β -NiAl

Improve the NiAl coating

Alloying additions: computational guide

$$T_m = 0.032 \frac{E^c}{k_B}$$

From Debye's theory of solids, derived by Smith, Rose and Ferrante, Appl. Phys. Lett (1984)

Brammer et.al., Adv. Sci. Tech. 72(2011) 31

$$E^{c} = x_{1}E_{1}^{c} + x_{2}E_{2}^{c} + x_{3}E_{3}^{c} - \Delta H_{f}$$

Alloying additions: computational guide

Objective: electronic stability (DOS)

Site preference

- Ab-initio studies on alloying additions down-selected by Miedema
- VASP, GGA potentials
- 54 atom unit cell [3 × 3 × 3]
- Site preference tested (both Ni and Al) sites

Alloying additions: computational sieve

$$T_m = 0.032 \frac{E^c}{k_B}$$

$$E^{c} = x_{1}E_{1}^{c} + x_{2}E_{2}^{c} + x_{3}E_{3}^{c} - \Delta H_{f}$$

Brammer et.al., Adv. Sci. Tech. 72(2011) 31

Metal	Cohesive E (kJ/mol)	Metal	Cohesive E (kJ/mol)
Al	327	Ir	670
Ni	428	Pd	376
Rh	554		

Alloying additions: experimental sieve

- Addition of PGM elements helps in avoiding spallation.
- Hf addition further reduces the growth rate of the oxide scale.

Ray et. al., JOM 62(2010) 25

Putting it all together

- Grains produced by coating are columnar
- Exposed grain size is approximately 20µm

OIM of NiAl coating

Coherent but not epitaxial interface between the base alloy and coating.

Failure mechanisms

- Pre-existing cracks provide oxidation pathways.
- Integrity is a function of NiMoO₄ formation vs Al₂O₃ coverage.
- T dependence is function of Al₂O₃ growth rate and MoO₃ vapor pressure

Approach

Cracks in a layer of NiAl appears during the coating process

Probability of aligned cracks is very low in a double layered coating

Additionally, pre-oxidation at lower temperatures can help cover cracks

Time and temp = balance of Al_2O_3 growth rate vs NiMoO₄ growth rate

Cyclic oxidation @ 1150°C

Optimal coating approach:

Double layered coatings

Pre-oxidized at 1100°C for 5 hours

Oxidized microstructures

Double layered coating, pre-oxidized at 1100°C for 5 hours, followed by 20 hours of cyclic oxidation at 1150°C

Formation of significant quantities of NiMoO₄ could be mitigated.

Al₂O₃ scale could be observed instead

Cracks in the two layers of NiAl don't coincide – results in a barrier for the oxygen pathway into the alloy

Summary

- Double layer coatings, pre-oxidized at lower temperatures result in improved oxidation resistance – alloy oxidation is now governed by the coating integrity
- Using Hf + PGM (Ir or Rh), the NiAl can perform adequately at 1200°C.
 Packaging the NiAl-Ir+Hf layers on NiAl-Mo alloy could result in a significantly improved alloy at 1200°C
- A multi-scale hierarchical approach to alloy design can provide a viable alternative to Edisonian methods of alloy design

On-going/future work

- Modeling and optimization of the pre-oxidation process
- Mechanical testing

