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The High Temperature challenge

Higher temperatures - Higher energy efficiencies

Challenges —

e High T oxidation

* Moisture

* Creep and high T deformation

e Toughness & manufacturability

* Highly variable coal combustion environments
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Conceptual approach

Rapid screening of phase A Alloy development by multi-stage

space: base alloy selection hierarchical screening
(Deliverable: semi-empirical model
for multicomponent systems) )

Characterization & testin : " ) Q0
g Alloying additions guided £
of the base alloy by ab-initio studi c
(Deliverable: identify failure modes _ \/ (eLesUl "_’ Stu |es . Qv
and alloy requirements) (Deliverable: Chemical modification 8
for enhanced stability) O
wn
. | -
Microstructural Q
modifications and gradients l_%
(Deliverable: Processing methods
Ray et.al.,, JOM 62 (2010) 25 for graded microstructures)
Toughness, deformation Oxidative damage:
and high T strength mechanisms and models
(Deliverable: Optimizing strength (Deliverable: Establish and improve
via processing techniques) oxidative limits)
A g oty : IOWA STATE
UNIVERSITY



Alloy architecture

Key requirements How do we develop stronger,

A. High melting temperatures oxidation resistant alloys that
B. Adequate strength and toughness operate at very high
C. Good oxidation resistance temperatures?

Metal rich solid solution
(strength and toughness) High
AIon 5 melting
Reservoir for passivating temperatures
Superalloys Silicides
(Alumina scale) (borosilicate scale)
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Alloy selection: a coarse-grained approach

Estimation of formation enthalpies (ternary alloys)

AH = $AH 55 (@) + $AH g (8) + dsAH A (7)
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thermodynamics: the
initial screen
Ray et.al., J. Alloys Comp 489 (2010) 357
A s (sl 5 IOWA STATE

UNIVERSITY



Alloy selection: the NiAl-Mo system

5 6 7 8 5 10 11
Sc Ti v Cr Mn Fe Co Ni Cu
1539 | 1670 | 1902 | 1857 | 1244 | 1540 | 1495 | 1453 | 1083
Y Ir Nb | Mo Tc Ru Rh Pd Ag
1526 | 1852 | 2467 | 2617 | 2200 | 2250 | 1963 | 1552 961
La Hf Ta W Re Os Ir Pt Au
920 2227 | 3014 | 3407 | 3180 | 3027 | 2443 | 1772 | 1065
Requisites
e High temperature oxidation
resistance 2
- .- =
e High thermal stability £29
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High melting + poor oxidation |
""""" 90
_________________________ | |
Al 10 .
F_ NiAl Ni
Haenschke et.al., J. Phys. 240(2010) 012063
Bei & George, Acta Mater 53(2005) 69
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Processing and microstructures

Arc-melted

Directionally
solidified

Significance of Mo
distribution — Mo
helps in crack
deflection

Liquid phase
sintered
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Fracture Toughness

 Drop-cast and DS 15 atom% Mo alloy
e Fracture toughness ~ 9.4 MPa.m/2

— Jamie Kruzic, OSU
* Fracture toughness of NiAl ~ 5 MPa.m?/2
* Fracture toughness of Mo-Si-B alloys ~ 12
MPa m?/2

e DS eutectic Mo-Ni-Al alloy has shown
~107 decrease in creep rate

Mo dendrites pull out, indicating its effect
on the toughening mechanism in this alloy.

The challenge: Optimize the microstructure
of the base alloy in order to optimize the
strength and toughness of the alloy.
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Composition optimization — Oxidation mitigation
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The effect of temperature

Cu plating

Oxide scale

Sample prep
schematic

Base Alloy

Cross-section
micrographs after )

10 hours of
20 . .
) oxidation
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Ray et.al., Appl. Surf. Sci. 301(2014) 107
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Oxidized surfaces

XZ58 188xm

1000 °C 1100 °C 1200 °C

Ray et.al., manuscript under prep

Oxidation time: 30 minutes

NIO + NiMDG4
NiALO,
a-Al,0,

As temperature increases, NiMoO,
regions grow larger, but they start
disappearing above 1100 °C

NiAl,O, and NiO seem to predominate

above 1100 °C Oxidation possibly results in a multi-
layered scale
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Stability of NiMoO,
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Oxidation mechanism

NiO + NiMoO,
NiAl,O, + traces of NiO and NiMoO,

a-Al,0,
MoO, + a-Al,0,

Phase transformation in NiMoOﬂ

Heating « B @ 602 °C

Cooling B o @ 250 °C
Volume change associated with transformation on cooling ~ 20%

Massive volume change is responsible for spallation — hence its
only the layers containing NiMoO, that will spall off
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Oxidation mechanism

Consider the oxidation of a Mo rich
region of the surface.

Ray et.al., article under preparation
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Oxidation mechanism

< Al,O, Consider the oxidation of a Mo rich
region of the surface.

Initial oxidation of Mo results in the
formation of MoO; which later
volatilizes.

Mo +3/2 0, - MoO,

Ray et.al., article under preparation
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Oxidation mechanism

Consider the oxidation of a Mo rich
region of the surface.

Initial oxidation of Mo results in the
formation of MoO; which later
volatilizes.

Mo +3/2 0, - MoO,

NiMoO, forms at the interface along
with alumina

2Mo0, + 2NiAl +3/20, - 2NiMoO, + Al,O,

Ray et.al., article under preparation
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Oxidation mechanism

< Al,O, Consider the oxidation of a Mo rich

NiO region of the surface.
Al,O,
Initial oxidation of Mo results in the
NiAl,O, formation of MoO; which later
volatilizes.

NiMoO, dissociates progressively Mo +3/2 0, - MoO;

NiMoO, forms at the interface along

NiMoO, - NiO + MoO; . .
with alumina

The NiO reacts with the underlying

inel i 2Mo0, + 2NiAl +3/20, - 2NiMoO, + Al,0
Al, O, to form the spinel interphase MoOj, + 2NiAl + 3/20, - 2NiMoO, + Al,0;,

NiO + AL,O, - NiAlLO,

Ray et.al., article under preparation
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Oxidation mechanism

= NiO
+« NiMoO

4

© NiALO,

Spalled scale

Intensity (arb. units)

20 30 40 50 60 70 80
26

X-rays of the spalled and the surface scale

38 EBEC

<« Oxidized micrograph (1200°C, 10 hours)

Ray et.al., article under preparation
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Designing microstructural gradients

Concentration (at. %)

30 - Al and Ni
- Mo
20 4
N /
0 Y T v T
0 50 100

Distance from surface (um)

The coating should be:
-Oxidation Resistant
-Compatible with the
base alloy

By using B-NiAl as a
coating, on top of the
MoNiAl alloy, chemical
gradients are decreased,
which can prolong the
life of the coating

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 19
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Designing microstructural gradients

The two phase (Mo)+NiAl microstructure of the cast alloy necessitates a two
step coating method.

Ni / Al coating Annealed coating
In order to form the B-NiAl coating, Ni has Easily controllable process to
to be deposited on the surface to avoid adjust amount of Al deposited to
formation of Al-Mo intermetallics. form the B-NiAl

A naAmes Laboratory 20 [OWA STATE
R e S UNIVERSITY




Improve the NiAl coating

2 Cyclic oxidation at
1 1250 °C — massive
0 - . :
_ oxide scale spallation
C\IA _2 |
% | 1 cycle = 1 hour at
=2 -1250°C and 30 min at
£ -4- .
~ ambient
- ]
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Alloying additions: computational guide

T =0.032 E%
B

From Debye’s theory

-- of solids, derived by
Smith, Rose and
Ferrante, Appl. Phys.
Lett (1984)

Formation enthalpy (kJ/mol)

ScY TiHfZr VNbTaCrMoW MnReFeRuCoRhIrPdPt
Elements

E°=XE "+XE, +xE; —AH,

Brammer et.al., Adv. Sci. Tech. 72(2011) 31
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Alloying additions: computational guide

Objective: electronic stability (DOS)
Site preference

e Ab-initio studies on alloying
additions down-selected by
Miedema

 VASP, GGA potentials

e 54 atom unit cell [3 x 3 X 3]

e Site preference tested (both Ni
and Al) sites
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Alloying additions: computational sieve
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Alloying additions: experimenta
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O Addition of PGM elements
helps in avoiding spallation.

0 Hf addition further reduces
the growth rate of the oxide
scale.

Ray et. al., JOM 62(2010) 25
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Putting it all together

" Grains produced by
coating are columnar

" Exposed grain size is
approximately 20um

OIM of NiAl coating

Coherent but not epitaxial
interface between the base alloy
and coating.

XZB0 1808mnm [

Severs et.al., article under perparation
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Failure mechanisms

0.020 ~
* Pre-existing cracks provide oxidation ] /
4
pathways. ~ 0.015- /
:*
L : : ® P d
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Approach

Cracks in a layer of NiAl
appears during the coating
process

Additionally, pre-oxidation at
lower temperatures can help
cover cracks

Probability of aligned cracks
is very low in a double
layered coating

Time and temp = balance of
Al,O, growth rate vs NiMoO,
growth rate

Creating Materials & Energy Solutions
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Cyclic oxidation @ 1150°C

Optimal coating
> approach:
=
9
(@)]
E Double layered
0] .
2 coatings
% -2 \\ single layer pre-oxidized coupon
1 - — —single layer fresh coupon L
2 \
@ =44 - - —double layer fresh coupon Pre-oxidized at
= a8 % double layer pre-oxidized coupon 1100°C for 5 hours
. \
-8 - \
— T ' T * 1T * T "+ T T T ' 1
0 2 4 6 8 10 12 14 16
Furnace Hours (hrs)
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Oxidized microstructures

Inner NiAl layer
Outer NiAl layer

1 E“El 1 == m

A

Double layered coating, pre-oxidized at
1100°C for 5 hours, followed by 20 hours

of cyclic oxidation at 1150°C Cracks in the two layers of NiAl
don’t coincide —results in a
Formation of significant quantities of barrier for the oxygen pathway
NiMoO, could be mitigated. into the alloy

Al,O, scale could be observed instead

Creating Materials & Energy Solutions
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Summary

Double layer coatings, pre-oxidized at lower temperatures result in
improved oxidation resistance — alloy oxidation is now governed by the
coating integrity

Using Hf + PGM (Ir or Rh), the NiAl can perform adequately at 1200°C.
Packaging the NiAl-Ir+Hf layers on NiAl-Mo alloy could result in a
significantly improved alloy at 1200°C

A multi-scale hierarchical approach to alloy design can provide a viable
alternative to Edisonian methods of alloy design

On-going/future work
Modeling and optimization of the pre-oxidation process
Mechanical testing

A Creating Materials & Energy Solutions

; ,-.\mv.u. Laborat ory IOWA STATE
UNIVERSITY

1g M




