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Main Steam Pressure (MPa)

Advanced UItra-SupercrltlcaI (A-USC)
Power Plants

* Boiler tubing exposed to two extreme
environments

— The outside is exposed to sulfidizing

environments (fireside)

— The inside of the tubing is exposed to

supercritical steam (steamside)

31 MPa
1st Sugercritical Presgure
Presqure (610
" / 600°C
) ) 593°C
(24.1 MPa) / (246 MPa) —
(566°C)
Temperature
(538°C) |
‘ 18.6 MPa)
-
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Operation Conditions in Japan. Fukuda, Adv. In Mat. Tech.

for Fossil Power Plants, 6" International Conference , 2010.
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Steam Temperature (deg-C)

High-voitage
Electricity

Warm Water

Condensor

Increases in both pressure and

temperature are planned for

Boiler
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Coal Bunifer I '
|| Particulate Removal ||
1: (Fly Ash) I‘ '.
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! < T Exhaust
Coal Pulverizé < Water Stack
it eam
Air
Steam
Generator Turbine
Slag Disposa

commercial plants to increase efficiency

Steam temperatures of 760°C, 35MPa
— Tubing operates at about 785°C

Planned lifetime of 60 years

Ferritic ODS alloy desired for tubing
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Traditional Production of Oxide Dispersion
Strengthened (ODS) Alloys by Mechanical Alloying

Highly anisotropic properties

— Much lower transverse strength

— Cross-rolling solution

High contamination with ball milling

— 0O, tramp metallics
— Strict processing solution

100

10

Approximate Processing Rate (kg/min)

— Milling

— Atomization

Spex Attritor Commercial Gas Atomization

Processing Method

Powder production rate for various methods.

Inconel MA956®

100 |-

| 0 |
N O
\‘{C \ =) \ 0O d

[m]
Axial creep data

Log Stress (MPa)

Transverse creep data

Long milling times 0 N

N . d f 22 23 24 25 26 27 28 29 30
arrow winadow ror LMP=(T+273)*(20+log(t)]*0.001

hot deformation Transverse and axial creep parameters of
processing to final mechanically alloyed MA956. Wright et. al.

19 A I C FE Materials 2005
shape nnual Conference on aterials

* High Material Costs

Marginal RT ductility — ODS material MA956 sheet
was $165/kg

— Caused exit from marketplace

Anderson et al, 26" annual conference on FE materials, 2012

A

«== Ames Laboratory

Creating Materials & Energy Solutions

U.S

DEPARTMENT OF ENERGY

2014

Creating Materials and Energy Solutions




Chemical Reservoir ODS Alloy Design

Internal Oxygen Exchange Reaction Dissociation of

»Y-enriched intermetallic compound Cr-enriched boundary oxide
(IMC) precipitation (Y reservoir) ‘ \

» Dissociation of Cr-enriched prior particle

Y-enriched IMC
boundary (PPB) oxide (O reservoir)

Precipitation
(solidification structure)

Dissociation of
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WABRI EORE AiRA T PP
CompWen

excRaNBE NeARiRL
(proper balance of Y and O)
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GARS Processing of Precursor Powders with
Chemical Reservoir of Oxygen

* Gas Atomization Reaction Synthesis (GARS) process has
been shown to produce ODS materials

* Atomization utilizes high pressure gas to produce a

powder alloy

* Rapid solidification eliminates need to mix alloy through

160

¢ CR-118
—CR-118 Model
m CR-126
~——CR-126 Model
A CR-160
~——=CR-160 Model
+ CR-156
=—=(R-156 Mode!

140

%}

100

»

Oxide Thickness (nm)

40

10 20 30 40 50 60

Particle Diameter (pm)

Theoretical vs. Actual oxide thickness in GARS
alloys. Rieken, lowa State University, 2011.
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ball milling

Much higher production
rate compared to milling
methods

Inert + reactive gas can
be used to create surface
film with controlled
oxygen addition

) /(J'dS Flow

i
:* Nascent Particles

/ & ///(’)x_\'gen

- Formation of

~Or0O ) Metastable

//\§ Y / Oxide Shell
o°0
200

Oxide Formation During
GARS. Rieken et al., Int. J. of
Powder Metall., 46 (2010) 6.
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Use of Replacement Reaction with Oxygen Released
from Chemical Reservoir to Form ODS Alloy

Cr,0; PPB Oxide

N

As-Atomized Powder

Economically viable e
and high performance SA LT Dissociated PPB Oxide
Fe-based ODS stainless

steels

Nano-metric dispersoid Heat Treated (1200°C)
formation
I.E. Anderson et al., USPTO no. 8,603,213 5, 2013.



Add Corrosion Resistance with Al Addition to
GARS Processed ODS Alloy

* Protective Al,O; scale necessary for Oxidation
protection in steam conditions in Steam*

20
X
 Chromium additions help to lower the &
. c
necessary amount of aluminum ot
& o 0\ Al Alloy
- Oxidation @ PM2000
* Greater than 16 at.% Cr can cause 5 10 in'Air *
thermal embrittlement T . .
=
— Problem for PM2000 and MA956 2 5 « . . . - . . Susceptab|eto Thermal
e Chose composition at 16 at.% Cr and « +« + s« « « /| FatigueEmbrittlement
12 at'% AI - - - - - - - - - - -
— All powders will have uniform 0 5 10 15 20 25
composition Chromium Content at%

Oxidation Maps adapted from Pint and Wright, Mat Sci Forum,
2004, Tomaszewicz and Wallark, Oxi. Of Met., 1983
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Complications for Al Addition

Large decrease in strength when Al
added to traditional ODS

Formation of Y,Ti,O, oxide without
Al, however forms complex Y-Al
oxides when added

Y-Al oxide particles are larger and
have a lower number density

— larger spacing leads to lower
strength

Complex Y-Al oxides coarsen
rapidly which can be seen by the
strength difference with different
rolling temperatures

Y-Al oxides are detrimental to alloy
performance
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16.5Cr+8AI(1373K)

16.5Cr+8AI(1273K)

16.5Cr+8Al

UTS vs Composition at 700°C

16.5Cr
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Adapted from Kimura et al., JoONM, 2011

Dispersoid Distri

—

¥ G o WSF

bution, Kimura et al., JoONM, 2011

16.5Cr Base:Fe-16.5Cr-8Al-0.6W-0.17Ti-0.17Y (at.%) 2@/‘ 4
Rolled at 1423K unless otherwise noted
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(kJ/mole compound)

o

-

AG

Solution to Strength Reduction

Strength can be recovered through
additions of Hf, Zr

Strength recovery can be attributed
to formation of a more stable oxide

phase without Al
-Zhang et al., Acta Met. 2009

-400 4
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Adapted from Kimura et al., JoONM, 2011

* ZrO, and HfO, have lower free energy
of formation than Al,O,
— Y-Hf,Zr complex oxides more favorable
than Y-Al oxides
* TiO, has a higher free energy of
formation than Al,O,
— Y-Al oxides form in Ti containing alloys

16.5Cr Base:Fe-16.5Cr-8Al-0.6W-0.17Ti-0.17Y (at.%) /[ )| /|
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Oxygen Diffusion in Cast Alloys

Decrea§ing Acti.v.ity of O Not enough O e Reaction front
Increasing Stability J| to form oxides penetration showed
Al,O, HfO, Y,Hf,0, promise for dissociation

during replacement
reaction of CR oxygen

-

e For this case the reaction
front can be calculated
with the following
equation

E=V2DL0 NiOTs t/vVIBTo

* The oxide progression
into the sample shows
relative oxide stability

— Y,Hf,0, oxides are
the most stable

/

Example of Rhine’s Pack sample after heat treatment at 1160°C for 10 hours

A Fe-16Cr-10A1-0.25Hf-0.2Y (at.%) 201
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Alloy Choices

Al Alloy (at | No Al Alloy

%) (at%) Purpose
Fe Bal Bal Ferritic matrix
Cr 16 16 Corrosion
Al 12 0 Corrosion
W 0.9 0.9 Strengthening
Hf 0.25 0.25 Dispersoid
Y 0.2 0.2 Dispersoid

e Crchosen to avoid embrittlement and Al to
compliment for oxidation protection

* Designed to form 1 vol% Y,Hf,0,

* Tungsten added as solid solution/laves
phase strengthening mechanism
— Also shown to benefit creep rupture strength

* No Al alloy for direct comparison

A 2014
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GARS powder producation

Actual Alloy Compositions

« Spherical powder morphology e ///"
. 7o /
. . 5 60 //
* Elevated yttrium content in No Al alloy < s //// .
— Lower chromium content in Al alloy 8 22 //// No Al
1 /
0 : / S
' PartliSIe Size, pm 100

* Same gas flow parameters

e Similar size distribution between
the two alloys

{

00 .0
0.0
aZn®

T —— — Slightly finer powder in Al alloy
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Alloy Oxygen Content

Increased oxygen levels in No Al alloy
— Elevated in all powder sizes

Oxide thickness measured through Auger
depth profiling

— Oxides show Yttrium Enrichment
Still found to be amorphous through XRD

. @ No Al
Size Dependent Oxygen .
0.6
0.5 L
S 04 =
(4]
c
g;003 .
x
0 0.2 .
te, * & o * P
0.1 || = B
0
0 20 40 60 80 100 120

Average Particle Size (um)
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03 AICPS
459 C CPS
3 CrCPS
40—: . Fe CPS
353 O CPS
E Y CPS
= 303 A
I ~26nm
=257
20]
153
04— _
ES e ————
_l UL I L I “l—i T I LI I L I L I 11T I L
0 50 100 150 200 250 300 350

time in scconds (s)

Example thickness measurement on Al containing
alloy 32-38 um powder using SiO, standard for etching

Al Powder Powder

| GA-1-198 |

9 nm
11 nm

25 nm
26 nm

32 nm
34 nm

Elevated oxygen caused by slightly higher
pour temperature in No Al alloy
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Solidification Structure Importance

* Previous work with:
— CR-156 (Right)
Fe-15.84Cr-0.11Hf-0.18Y at%
— CR-166 (Below)
Fe-15.91Cr-0.12Ti-0.09Y at%
e Dispersoids follow distribution of
intermetallic phases

Y-Hf-O dispersoids Y-Hf-O dispersoids

* Finer dispersoid distribution leads to
increased yield strength

400
350 A
300 T
250 1
200 A
150 -
100 A
50 7

0 -

B -20um

W 45-75pm

Room Temp. YS, MPa

Adapted From Anderson et al., 26" Ann. Conf. on 20-53um Powder <5um Powder
FE Mat., 2012 Rieken et al., INM, 2012
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Alloy Consolidation

-8 um powder chosen for consolidation
— Closest to ideal oxygen content (0.7 at%)

— Smaller powder will have better distribution
— Still have enough for full HIP can

* Sealed in 316L stainless steel can Al HIP can prior to consolidation (top); Al HIP can after
consolidation at 850°C 300 MPa for 4 hours

— OQutgassed at 600°C and sealed under
vacuum

* Hot Isostatic Pressing (HIP) for
Consolidation

— 850°C hold temperature
— 300 MPa hold pressure
— 4 hour hold time

e Can turned off on lathe
— Samples EDMed and polished

2014
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Microstructure Evaluation

Al samples used in heat treatments 20 Oxide size M Micro Hardness 350
18 - 340
. 16 u
* Samples placed in furnace at £ 14 - 330 2
temperature and water quenched g0 20 §
2 10 5
* FeHf, ht phase found to be present in S 6 " a 300 5
all heat treatment samples except 4 - [ a0
() . [ |
1200°C; through XRD analysis (2) "
800 900 1000 1100 1200 1300
Ht Temperature, C, (850=As-HIP)
400
350 T
s 3007  Decrease in hardness found with increase in
y 250
> 200 " -20um heat treatment temperature
€ - . . .
'2 150 1 HasToum — Conversion of dispersoids to oxygen lean
8 100 7 composition leads to increase in dispersoid
>0 crystallite size (found through Scherrer analysis)
O -

Adapted From Anderson et al., 26" Ann. Conf. on FE Mat., 2012
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Temperature Effects on Microstructure

e Cannot see dispersoid
phase through SEM

— TEM would be required to
resolve at nano-scale

* Clusters of FeHf, ht _
precipitates found in -
1000°C and 950°C 12 B e——— TR

— Could be detrimental
during rolling processes

10 pm

* No noticeable FeHf, htin
1100°C sample

— Even though small
presence detected in XRD

1000°C 10 um

2014
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FeHf, ht Phase Prevention

°C

Temperature,

1400

o= HT 1000C 4Hr
1200 | T HT 1200C SHr * Preventing formation of FeHf, ht phase
HT 1200C 5Hr + Anneal . . °
1000 —4 \ — through homogenization at 1200°C
g0 1 1/ \ — FeHf, ht phase is possible site for crack
600 | | \ initiation during rolling
a00 1 \
Y-Hf Dispersoid ® FeHf, rt

200 II ‘ B FeHf, ht ® Fe . (YHf),

0 v Unknown A FeKg

0 100 200 300 400 500 600 v
Time, Minutes ® A ® HT 1200C 5Hr +
FeHf, ht phase was not found v . . Anneal
present after homogenization ot e L HT 1200C SHr
[}
\4
sl 2 2 HT 1000C 4Hr

Unknown phase present in both Al T T T T

and No Al samples

— Unknown phase is not Y-Al oxides 30 35 40 45 50 55 60

20 (°)

o
1200°C chosen for HT temperature X-ray diffraction data obtained with Co tube;

A
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FeHf, ht phase noted with red arrows
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* Samples heat treated at
1200°C for 5 hours

— Ramp rate of 1200°C/hour

e As-HIP microstructures have
the same cellular
intermetallic compounds in
larger powders

— Not as prominent in the
heat treated condition

* Larger precipitates seen in
No Al alloy in the heat
treated condition

A

Al (Fe-15Cr-12.3A1-0.9W-0.24Hf-0.19Y) 2014
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Longitudinal

Rolling Study

* Samples prepped through EDM and
Transverse polishing

R — Prevent Crack Formation
Three Orthogonal Rolling Directions

 Soaked at 1050°C prior to
rolling and between rolling
passes

— Rolling Achieved through
10% reduction in thickness
passes

— Total reduction in thickness
of 70% (~50% Reduction in
cross-sectioned area)

e Surface Grinding to ensure
flat parallel surfaces

~3 in Iength

L/
A Al (Fe-15Cr-12.3A1-0.9W-0.24Hf-0.19Y) 2014
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As-Rolled Microhardness

Normal 400

Longitudinal

H No Al

HAl

Transverse

Vicker's Hardness
N
o
o

Three Orthogonal Rolling Directions

e Slightly lower microhardness in 100
longitudinal direction of No Al 5
— Transverse strength in MA956 0
is ~¥35% of longitudinal As HIP As H.T. Longitudinal  Transverse Normal
-Wright et. al., 19th annual Orientational effects on alloy microhardness

conference on FE materials, 2005

e Al alloy had fully isotropic Microhardness values indicate that GARS produced ODS
microhardness values alloy does not exhibit anisotropic strength like MA ODS

4
A Al (Fe-15Cr-12.3A1-0.9W-0.24Hf-0.19Y) 2014

ww Ames Laboratory ~ No Al (Fe-16Cr-0.0Al-0.9W-0.25Hf-0.24Y)
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Comparison of Alloy Tensile Properties

900
* Type SS3 tensile specimens 200 s - MA9S6
machined from rolled samples oo % -+ %+ Al alloy
— Tensile data taken as an o | T % PM2000
=
average of transverse and £ 0 Weerennnnnn., -
longitudinal g '
2 400 B
e Comparable strength to 2 oo m %
. . i~ .
previous mechanically alloyed 200 g e,
PM2000 and MA956 100 TR g
* X
* YSslightly higher than goal 0
Strength at Operation 0 100 200 300 400 500 600 700 800 900
Temperature, °C
temperature

Tensile strength of GARS produced alloys compared to previously commercial

— Some Strength loss due to available MA956 and PM2000 (data provided by manufacturers)

increased dispersoid size
caused by low oxygen content .
_ Increased oxygen can be added Yo Meets threshold stress for A-USC operation

in simple process modification conditions (further creep testing planned)

[
A Al (Fe-15Cr-12.3A1-0.9W-0.24Hf-0.19Y) 2@1 /

w= Ames Laboratory No Al (Fe-16Cr-0.0Al-0.9W-0.25Hf-0.24Y)
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Comparison of Alloy Tensile Properties

e Al data taken as an average of 100 o Al
averdse OF | 1 e alloy L
transverse and longitudinal %0 MASSE s
directions 81 . & pm2000 1
. . . X 70
— Higher elongation in s :
. . L2 60 o
transverse direction s :
§ 50
= 40 I
.. 5 X l
e Al containing alloy had much S U T . L.
; ¥ 0o tlham | 20 |gesesseeeesesnsssssesensenctlt > ST, ShhhhhhhhdAdds
higher ductility at 800°C than 20 X I
I N | I ST TTITTITTTTITTIITIN = |
previous ODS alloys 10 :
0
0 100 200 300 400 500 600 700 800 900
. o Tempearture, °C
* Ductility peak at 600°C

followed by decrease in Total Elongation of GARS produced alloys compared to previously commercial
available MA956 and PM2000 (data provided by manufacturers)

mechanically alloyed ODS 3X increased HT elongation

materials

— Caused by transition from compared to MA alloys---will be
transverse to intergranular . .
failure benefit for hot deformation

[
A Al (Fe-15Cr-12.3A1-0.9W-0.24Hf-0.19Y) ZQW /

w= Ames Laboratory No Al (Fe-16Cr-0.0Al-0.9W-0.25Hf-0.24Y)

Creating Materials & Energy Solutions

Creating Materials and Energy Solutions

U.S. DEPARTMENT OF ENERGY




Corrosion

in dry air at 1200°C

w )] ~

SN

Weight Gain, mg/cm?

=

w
|

N
|

~

PM2000

100 200 300 400 500

Time, Hour

Mass gains in dry air at 1200°C, cycle times of 1 hour.
Data obtained by Bruce Pint at ORNL
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No Al (Fe-16Cr-0.0Al-0.9W-0.25Hf-0.24Y)

No Al alloy had spallation occur after 100 cycles

— Significantly more protection with aluminum
additions

Al alloy had much higher mass gains than
PM2000 or cast FeCrAlY

— Similar to FeCrAlY + Hf due to internal oxidation

Internal oxidation forms pegs which can
increase oxidation resistance

— Large pegs can be places for crack initiation
= Allam et al, Oxidation of Metals, 13 (4) 1979

Low oxygen content caused large excess of
reactive intermetallics (Y and Hf)

Al (Fe-15Cr-12.3A1-0.9W-0.24Hf-0.19Y) 2014
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Corrosion in wet air at 1100°C

* Water containing atmosphere to simulate
s steamside of boiler tubing

— Higher temperature for accelerated effects
3 Al alloy /—_/

* No Al alloy had mass loss occur after 1 cycle

./
//< PM2000
0 No Al * Al alloy had increased mass gain compared to

\——\ other PM2000 and cast FeCrAlY + Hf

o o0 400 600 800 1000 — Caused by internal oxidation due to low oxygen
Time, Hour content in alloy

— Consistent mass loss shows that No Al alloy is
not protective in this atmosphere

Weight Gain, mg/cm?

Mass gains in 10 volume % water vapor at 1100°C,
cycle times of 100 hours. Data obtained by Bruce Pint ° Al aIon showed protective scale formation for

at ORNL. )
1000 hours with water vapor present

I
A Al (Fe-15Cr-12.3A1-0.9W-0.24Hf-0.19Y) ZQW /A

w Ames Laboratory ~ No Al (Fe-16Cr-0.0Al-0.9W-0.25Hf-0.24Y)
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Specific Conclusions

 Adesirable composition for GARS processing to ODS alloy for enhanced corrosion
resistance, dispersoid formation, and other factors is: Fe-16Cr-12Al-0.9W-0.25Hf-0.2Y at.%

« After full density consolidation by HIP, heat treatment conditions of 1200°C for 5 hours
appears to be optimum

— Prevents high temperature phase formation and solutionizes for hot rolling
* Direct comparison enabled by processing same ODS alloy with and without Al addition
— Higher strength found for aluminum containing alloy
— Comparable strength to PM2000 and MA956
 Aluminum containing alloy had better corrosion resistance in dry and wet air
— Higher than normal corrosion in Al alloy compared to PM2000 and cast alloys due to high Hf

— Completion of oxidation reaction for Y+Hf intermetallics will improve corrosion resistance

* Awaiting corrosion and strength results from short time ball milling with higher
oxygen level

A 2014
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General Conclusions

 New A-USC operating conditions require new materials to be developed
— Aluminum additions for steamside corrosion resistance
— Oxide dispersion strengthening (ODS) for high temperature strength
* Previously available commercial ODS alloys produced by mechanical alloying were targeted
— MA processed alloy too costly for desired shapes (e.g., tubes) and no longer in marketplace.
* GARS processing method in advanced development stage for producing ferritic ODS alloys
— Much lower net-shape (tube) cost likely in ODS alloys from GARS precursor powders (NE funds).
— Recent CRADA project with commercial powder maker established GARS processing pilot plant.

—~
——
e
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