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Vision: sensor for control signals to optimize gasifier output and gas turbine input

= ]1stgeneration laser absorption sensor for CO, CO,, CH,, and H,O
» Stanford sensor tested in a pilot-scale (1 T/day coal) gasifier (U Utah 2009-2012)

= 2nd generation CO, CO,, CH,, and H,O sensor developed

» Tested in an engineering-scale (30,000 Ib/hr syngas) gasifier at NCCC

(December 2012 & March 2014)

Absorption sensing: How does it work?



Absorption Fundamentals: Species

Absorption of monochromatic light
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Two Absorption Sensor Strategies:
Direct Absorption (DA) & Wavelength Modulation Spectroscopy (WMS)
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= Direct absorption: Simple, if absorption is strong and isolated

= WMS: More sensitive especially for small signals (near zero baseline)
= WMS with TDLs improves noise rejection
= Normalized WMS, e.g. 2f/1f cancels scattering losses!

What wavelengths for syngas detection?



Gas Species Important to Combustion/Gasification
Absorb Light in the Near-Infrared
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= Important gasification species can be monitored (e.g., CO, CO,, CH,, H,0)

1. 1.5

= Select 2-2.3um to minimize H,O interference for CO, CO,, CH,

What does the facility look like? 5



NCCC Gasifier Large-Scale DoE Demo

Instrumentation
shelter

NCCC transport gasifier based on a circulating fluidized bed concept

Goal:
Laser absorption in situ measurements of syngas products composition

Where Is sensor located?



TDL Sensor Location and Syngas conditions

Cyclone _ N
$J Syngas cooler Nominal conditions at TDL sensor
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Syngas output
» TDL sensor monitors syngas flow 30m downstream of the PCD
» Flow laden with particulate (< 0.1% transmission) at sensor location

How do we measure 4 species?



Detection Strategy: Time Demultiplexing
Wavelength Scanned WMS-2f with 1f Normalization
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Connections of Stanford Sensor to NCCC Facility

Redundant valves and windows

/ Detector gain switch
/' Detector power supply ()

Experiment control
House (DAQ, laser
controller) DB 25

= Electronics in the control house ~30m to measurement location

= Lasers near measurement location (~ 2m away)

= Sensor operated remotely (alignment, detector gain, laser scanning)
Next: Further details of optical system 9



Optics Design: Multiplex Four Lasers

Receiver Window Valve Valve Window Transmitter
optics pair pair Syngas flow  pair pair optics Eiber
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» Fiber bundle delivers light from four lasers
m  Optics combine all beams onto common line-of-sight w/ only one detector

m Large beam size reduces beam steering noise

Next: Data from gasifier warm-up v



Time-Resolved H,O During Gasifier Warm-up
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for controlled gasifier warm-up

" |n situ measurements of syngas moisture content capture transient events
" Propane used for slow heating of ceramic linear
" Pulsed coal feeding begins at hour 38
" Reactor shut down at hour 54 (before transition to stable gasification)

Next: Transition to gasification a



H,O and CO, During Transition to Gasification
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= CO, fluctuations damped when reactor transitions to gasification
= GC time resolution does not capture transients, only average mole fraction

12



Sensor Captures Onset of Gasification

via CO & CH,
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= Rapid jump in CO and CH, at onset of gasification
» GC data have large time lag (shifted here by 20 minutes for comparison with laser)
» GC data also have poor time resolution (note slow CO response vs laser)

Next: Data from “Stable Gasification” -



Four Species Measurements After Gasifier “ Stable”
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= Laser sensor provides simultaneous CO, CH,, CO,, and H,O
= Correlation of CO with CH, confirms that fluctuations are real
» GC time resolution does not capture temporal fluctuations

Next: Long unattended monitoring :



18 Days of H,0O Unattended Monitoring
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= Continuous, stable measurements for 18 days (terminated by NCCC)
= Periodic liquid H,O samples taken from syngas agree with laser sensor
= Laser sensor show small fluctuations in the H,O mole fraction

Are sensor fluctuations real or noise?

15



H,O Sensor Captures Fluctuations in
Gasifier Reactor

1205

1200

1195

41190

[M] ainjetadwsay) J0j0e0Y

1185

TCT
: N |
%0.080 /
©
e ' |
()]
° \
= 'Y,
ON
T0.072 /
0721 TDL H,0
566.0 5665 567.0 567.5 568.0

= H,O fluctuation tracks the reactor thermocouple (note small AT)
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= H,0 fluctuation tracks the reactor coal feed pulse
= Laser sensor captures small H,O change (A mole fraction ~ 0.1%)
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Summary

Laser sensor yields successful measurements in syngas
= First-ever in situ laser absorption in pilot scale gasifier (Utah, 2010)
= First-ever in situ laser absorption at NCCC (2012)

= Successful in harsh environment, even with large (>99.9%) transmission
losses due to scattering & pressure ~15atm

Demonstrated excellent detection sensitivity at 1-second (1Hz):
= H,0: 200ppm-m
= CO: 200ppm-m
= CH,: 300ppm-m
= CO,: 800ppm-m
Unattended operation (>435 hours demonstrated)

Sensor strategy useful for other applications, especially at elevated
pressure and/or dusty gases



Recommendations for future work

= Add additional species important to specific application, for example
= NH,;, H,S, SO,, ....

= Improve data processing
= Provide real time readout compatible with facility record
= Provide web-based monitoring for unattended operation

= Refine optical engineering and repackage in smaller containers
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