Idaho National

Laboratory

Degradation of HVOF, Fe₃Al Coatings in Simulated Coal Ash

PI: Thomas M. Lillo

Co-Investigators:
W. David Swank
D.C. Haggard
Arnold Erickson

2014 NETL Crosscutting Research Review Meeting May 19-23, 2014, Pittsburgh, PA

Prepared for the U.S. Department of Energy, Office of Fossil Energy, under DOE Idaho Operations Office, Contract DE-AC07-05ID14517

Fireside Corrosion Mitigation in the A-USC Power Plant

<u>Alloy Approach – Rely on corrosion resistance of structural alloy</u>

- Alloys with the necessary high temperature mechanical properties usually do not possess the required corrosion resistance
 - Example EPRI Technical Update, "US Program on Materials Technology for Ultrasupercritical Coal Power Plants", March 2006:
 - Best mechanical properties for super heater applications are nickel-based alloys (Inconel 740, Inconel 617, Hastelloy 230, etc.)
 - Best fireside corrosion resistance exhibited by Fe-based or Ni-Fe-based alloys
- Improved corrosion resistance obtained with increasing chromium levels

Coatings Approach - Rely on corrosion behavior of coating only

- Chromia-formers high-Cr weld overlays and laser cladding can provide corrosion resistance
- Silica-formers (high silicon alloys, silicides)
- Alumina-formers aluminides (iron or nickel)

Aluminide Coatings

- High aluminum content (25-50 atomic % aluminum)
- Alumina corrosion product has better thermal stability than chromia at high temperatures
- Bulk iron aluminides have demonstrated sulfidation resistance
- Relatively inexpensive constituents
- Demonstrated applications methods:
 - Weld overlays
 - Thermal Spray (High Velocity Oxy-Fuel)
 - High deposition rates
 - Control residual stress state in the coating

Past Results

- Thermal spray parameters can be used to generate highly dense coating with varying levels of residual stress:
 - P_c determines particle velocity
 - Φ determines particle temperature
- Residual stresses in coating arise from three sources difference in CTE, solidification and peening
- Substrate surface preparation is critical in coating adherence
- Higher HVOF combustion chamber pressures result in higher coating density and better resistance to thermal cycling

High-Velocity Oxy-Fuel (HVOF) thermal spray

- Equivalence ratio (phi)- $\Phi = \frac{Fuel/Oxygen}{(Fuel/Oxygen)_{Stoich}}$
- Combustion chamber pressure P_C Determined by total mass flow of O_2 and fuel

Fe₃Al Coating

Goals of the Program

Develop Fe₃Al coatings for high temperature service in fossil fuel environments

- Develop High Velocity Oxy-Fuel (HVOF) thermal spray techniques for applying the coating
- Understand factors and thermal spray parameters that affect the reliability of this coating
- Verify the corrosion resistance of the HVOF coatings in simulated, fossil fuel, combustion environments:
 - High temperature, gaseous corrosion behavior
 Low corrosion rates in N₂-15CO₂-5O₂-1SO₂ + 10-20% H₂O @ 800°C
 - Corrosion behavior in the presence of simulated ash

Current Project Focus Goal:

Determine the corrosion/oxidation behavior of HVOF thermal spray coatings in simulated fossil fuel combustion atmospheres with simulated coal ash:

Tasks:

- Corrosion behavior of Fe₃Al coatings on Fe- and Ni-base alloys in simulated fossil fuel combustion atmospheres
 - $-N_2$ -15CO₂-5O₂-1SO₂ + 10-20% H₂O (high oxygen potential)
 - Simulated coal ash: 30% Al_2O_3 , 30% SiO_2 , 30% Fe_2O_3 , 5% Na_2SO_4 and 5% K_2SO_4 .
 - N₂-9%CO-4.5%CO₂-1.8%H₂O-0.12% H₂S-2% H₂O (low oxygen potential, high sulfur potential)
 - Simulated coal ash: TBD
- Comparison of HVOF, Fe₃Al coatings to conventional weld overlay coatings (C-22).

HVOF Coating Sample Fabrication

- •Coatings that fully encapsulate samples to assess the effects of CTE differences (substrates: 316SS, 9Cr-1Mo steel, Alloy 600)
- Fabrication method cannot involve harsh machining of the coating
- •Sample geometry must not have sharp corners

Coating Information

Weld Overlays

- Alloy 622 (21% Cr)
- Two passes
- Machined to
 ~1.0 mm thick
- 12.7 mm dia. rods

HVOF Fe₃Al Coatings

Supplier: AMETEK Lot #: 037601			Product: FAS-C (-270)		
Element	Fe	Al	Cr	Zr	С
Wt. %	Bal.	15.7	2.4	0.2	0.02

- Combustion Chamber Pressure, P_c:
 - 620 kPa
- 12.7 mm dia. rods
- Grit blasted (24 grit, Al₂O₃)
- Spray pattern 10 mm/sec, 10 rpm
- EDM samples ~10 mm long

As-Sprayed HVOF, Fe₃Al Coatings

HVOF Combustion Pressure, P_c=620 kPa

9Cr-1Mo Steel substrate

316 Stainless Steel substrate

Inconel 600 substrate

As-Deposited 622 Weld Overlays

316 Stainless Steel substrate

Inconel 600 substrate

Coating Degradation Testing in Various Atmospheres

- •Simulated fossil fuel, combustion atmospheres –
- Dynamic/once-through gas flow (85 ml/min)
- $-N_2$ -15CO₂-5O₂-1SO₂ + 20% H₂O
- 750°C (1000°C capable)
- Samples placed in low-walled alumina boat
- •Ash: 30% Al₂O₃, 30% SiO₂, 30% Fe₂O₃, 5% Na₂SO₄ and 5% K₂SO₄
- •Sample geometry allowed investigation corrosion behavior at:
- Coating/gas interface
- Coating/ash interface
- •4 sets of samples

Degradation in Simulated Coal Ash - Macro

297 hrs, 750°C

610 hrs, 750°C

997 hrs, 750°C

1500 hrs, 750°C

1984 hrs, 750°C

Degradation – 610 hrs, 750°C

Degradation – 1984 hrs, 750°C

Bottom

Coatings Failures at 1984 hrs

Failure appears to occur by degradation along prior "splat" boundaries

Alloy 600

Corrective Actions for HVFO, Fe₃Al Coatings

Need to improve splat-to-splat bonding

HVOF Parameters

- Increase particle temperature
- -Increase particle velocity (increase P_c)

Additional processing

- Laser processing of HVOF deposit
- Laser-assisted HVOF deposition (laser hybrid thermal spray)

<u>Laser Processing</u> Laser Power: 710 watts

Traverse Speed: 40 mm/sec

Coating/Substrate Interactions – 1984 hrs

Interaction near a pit $\sim 70 \mu m$.

Inter-diffusion of coating elements into substrate ~80 µm

Inter-diffusion into coating and into substrate, ~20 μm and ~30 μm, respectively

Degradation of C-22 Weld Overlay Coatings

Summary & Conclusions

- Corrosion rate is higher at ash/coating interface compared to coating/furnace atmosphere interface
- Degradation mechanism appears to attack prior splat boundaries
- Improved splat-to-splat bonding may be accomplished by increasing particle velocity and temperature during HVOF deposition or post-HVOF laser processing of the deposit
- Degradation of the HVOF, Fe₃Al coating in simulated coal ash is extensive and much faster than expected
- HVOF, Fe₃Al coatings do not appear to be suitable in the presence of coal ash
 - Degradation rate is in excess of 1 mm/yr
 - Exposure testing under these conditions will be terminated
- Previous results show HVOF, Fe₃Al coatings are very corrosion resistant in other fossil fuel combustion atmospheres and oxidizing environments.
- Weld overlays of C-22 also exhibited significant degradation in simulated coal ash (1-4 mm/yr)

Remaining Tasks

- Exposure of HVOF thermal spray coatings and C-22 weld overlay coatings in a reducing simulated fossil fuel combustion atmospheres (H₂S) and simulated coal ash at 475°C
- SEM/EDS characterization of reaction zone determine the change of aluminum concentration in HVOF, Fe₃Al coatings
- Final Report