

Intelligent Coordination of Heterogeneous Sensors in Advanced Power Systems

PI: Kagan Tumer

Oregon State University

kagan.tumer@oregonstate.edu

Agreement Number: DE-FE0011403

NETL Project Manager: Maria Reidpath

Motivation

- Where are we?
 - Advanced energy systems becoming more interconnected
 - Larger, distributed, more stochastic
 - Computation pushed further down the pipe
 - More powerful, cheaper, smaller devices

Motivation

- Where are we?
 - Advanced energy systems becoming more interconnected
 - Larger, distributed, more stochastic
 - Computation pushed further down the pipe
 - More powerful, cheaper, smaller devices
- Where are we going?
 - Hybrid systems
 - Electrical/bio/mechanical devices
 - Smart sensors
 - Tens of thousands of tiny, simple, unreliable sensors

Motivation

- Where are we?
 - Advanced energy systems becoming more interconnected
 - Larger, distributed, more stochastic
 - Computation pushed further down the pipe
 - More powerful, cheaper, smaller devices
- Where are we going?
 - Hybrid systems
 - Electrical/bio/mechanical devices
 - Smart sensors
 - Tens of thousands of tiny, simple, unreliable sensors
- What do we need to account for?
 - Tens of thousands of sensors
 - Failing sensors
 - Dynamic and stochastic environments

Key Challenge

How do we coordinate a very large number of heterogeneous sensors and actuators so that they collectively optimize a system objective function?

Where Should Focus Be?

• New optimization algorithms?

New control algorithms?

Where Should Focus Be?

• New optimization algorithms?

No!

New control algorithms?

No!

Where Should Focus Be?

New optimization algorithms?

No!

New control algorithms?

No!

- Focus on:
 - How to control?
 - What to optimize?
 - What are "good system" properties?

Cooperative Multiagent Systems

- System Description:
 - Each sensor has an *agent objective* it aims to optimize
 - A **system objective** rates the entire system's performance
- Important issues:
 - How do we set agent objective functions?
 - How to update them?
 - Can agents compute those objective functions?
 - What happens when information is missing?
 - What happens when agents fail?
 - What happens when system goals change?

Outline

- Motivation
- Critical Concepts
- Project Objectives
- Objective 1: Methodology and Results
- Objective 2: Methodology and Results
- Closing Remarks

Critical Concepts

- Evolutionary Algorithms
- Cooperative Coevolutionary Algorithms
- Multiagent Reinforcement Learning
- Objectives in Self-Organizing Systems
- Difference Evaluation Functions

- Stochastic, population-based search algorithm
- Operators: Mutation, Fitness Assignment, Selection
- Work well in optimization problems where gradient information is unavailable

Initialize *n* policies

Initialize *n* policies

Mutation

Create *n* slightly altered policies (2*n*)

Oregon State

Oregon State

- Evolutionary algorithms need to be extended for many agents interacting
- Multiple coupled evolutionary algorithms in parallel
- Only significant difference from standard evolutionary algorithm is fitness assignment stage

Population 1

Population 2

Population n

Oregon State

Oregon State

- Fitness of an agent is a function of two things:
 - The agent's policy
 - How the collaborating agents act
- Fitness assignment in cooperative coevolutionary algorithms is very context-dependent and subjective
- Credit assignment problem extremely difficult to solve
 - Fitness function shaping

Critical Concepts

- Evolutionary Algorithms
- Cooperative Coevolutionary Algorithms
- Multiagent Reinforcement Learning
- Objectives in Self-Organizing Systems
- Difference Evaluation Functions

Multiagent Reinforcement Learning

- A set of autonomous agents learns to coordinate/self-organize
- Model-free method to develop controllers for distributed systems
- Agents conduct trials repeatedly, and learn which actions yield high performance

Multiagent Reinforcement Learning

- Multiagent Reinforcement Learning:
 - Each agent maintains a Q-table: maps actions to their expected utility
 - After taking an action and receiving feedback, update Q-table:

$$Q(a) \leftarrow \alpha R + (1 - \alpha)Q(a)$$

- Key problems in multiagent learning:
 - Need to ensure agents don't work at cross-purposes
 - Need to ensure each agent contributes to the system
 - Setting agent **objectives** is a nontrivial task, and choice of objective functions has a large impact on system performance

Example: Global Objective Function

- Each agent receives the overall system performance as feedback
- Problem: too much noise in the feedback signal
- A team of 100 agents is acting in an environment:
 - 99 agents act optimally
 - 1 agent does nothing
 - Overall, the system performs well, and the agent that did nothing believes it helped the system

Example: Local Objective Function

- Each agent receives feedback based on local performance measures
- Problem: agents can become "greedy," and act to harm the system
- Agents acting in a surveillance domain
 - Local feedback based on "how much" information an agent collects
 - Agents will learn to fight over the easy to observe measurements, rather than distributing their efforts across the system

Objectives in Self-Organizing Systems

- Multiagent Learning
 - Each agent has a local objective it needs to optimize
 - Coevolutionary algorithms: fitness function
 - Reinforcement learning: reward signal
- We have seen that improper choice of fitness/reward can lead to poor system performance
 - Global feedback: too noisy
 - Local feedback: can lead to agents working at cross-purposes
- What should to agent feedback be?

- g_i(z) should be *aligned* with G(z)
 - An agent which increases g_i(z) also increases G(z)
 - "Is what's good for me good for the full system?"

- g_i(z) should be *aligned* with G(z)
 - An agent which increases g_i(z) also increases G(z)
 - "Is what's good for me good for the full system?"

$$\mathcal{F}_{g_i} = \frac{\sum_{z'} u[((g_i(z) - g_i(z'))(G(z) - G(z'))]}{\sum_{z'} 1}$$

- g_i(z) should be aligned with G(z)
 - An agent which increases g_i(z) also increases G(z)
 - "Is what's good for me good for the full system?"

$$\mathcal{F}_{g_i} = \frac{\sum_{z'} u[((g_i(z) - g_i(z'))(G(z) - G(z'))]}{\sum_{z'} 1}$$

- g_i(z) should be *sensitive* to agent's actions
 - Signal to noise, locality
 - "Can I extract what's good for me from signal?"

- g_i(z) should be *aligned* with G(z)
 - An agent which increases g_i(z) also increases G(z)
 - "Is what's good for me good for the full system?"

$$\mathcal{F}_{g_i} = \frac{\sum_{z'} u[((g_i(z) - g_i(z'))(G(z) - G(z'))]}{\sum_{z'} 1}$$

- g_i(z) should be *sensitive* to agent's actions
 - Signal to noise, locality
 - "Can I extract what's good for me from signal?"

$$L(g_i, z, z') = \frac{\|g_i(z) - g_i(z - z_i + z_i')\|}{\|g_i(z) - g_i(z' - z_i' + z_i)\|}$$

$$L(g_i, z) = \frac{\sum_{z'} L(g_i, z, z')}{\sum_{z'} 1}$$

Difference Evaluation Functions

• Difference evaluation function defined as:

$$g_i(\mathbf{Z}) = G(\mathbf{Z}) - G(\mathbf{Z}_{-i} + c_i)$$

Difference Evaluation Functions

• Difference evaluation function defined as:

$$g_i(\mathbf{Z}) = G(\mathbf{Z}) - G(\mathbf{Z}_{-i} + c_i)$$

- g_i(z) removes portions of G(z) not related to agent i
 - Good signal to noise ratio \rightarrow g_i(z) is **sensitive** to agent *i*'s actions

Difference Evaluation Functions

Difference evaluation function defined as:

$$g_i(\mathbf{Z}) = G(\mathbf{Z}) - G(\mathbf{Z}_{-i} + c_i)$$

- g_i(z) removes portions of G(z) not related to agent i
 - Good signal to noise ratio \rightarrow g_i(z) is **sensitive** to agent *i*'s actions
- If $g_i(z)$, G(z) are differentiable, then:

$$\frac{\partial G(\mathbf{Z}_{-i} + c_i)}{\partial \mathbf{Z}_{i}} = 0 \implies \frac{\partial g_i(\mathbf{Z})}{\partial \mathbf{Z}_{i}} = \frac{\partial G(\mathbf{Z})}{\partial \mathbf{Z}_{i}}$$

Difference Evaluation Functions

Difference evaluation function defined as:

$$g_i(\mathbf{Z}) = G(\mathbf{Z}) - G(\mathbf{Z}_{-i} + c_i)$$

- g_i(z) removes portions of G(z) not related to agent i
 - Good signal to noise ratio \rightarrow g_i(z) is **sensitive** to agent *i*'s actions
- If $g_i(z)$, G(z) are differentiable, then:

$$\frac{\partial G(\mathbf{Z}_{-i} + c_i)}{\partial \mathbf{Z}_{i}} = 0 \longrightarrow \frac{\partial g_i(\mathbf{Z})}{\partial \mathbf{Z}_{i}} = \frac{\partial G(\mathbf{Z})}{\partial \mathbf{Z}_{i}}$$

- Increasing $g_i(z)$ increases $G(z) \rightarrow g_i(z)$ is **aligned** with G(z)

Where are We Now?

- Proper objective functions significantly improve system performance
- Difference evaluation functions are extremely scalable, up to network sizes of 10,000 devices
- What about heterogeneous sensors?

What About Heterogeneous Sensors?

- What if we have heterogeneous sensors (agents)?
 - Different capabilities
 - (Potentially) different goals
- Example: pressure and temperature sensors
 - Set of temperature sensors and pressure sensors must be optimally located in a plant
 - Aim to maximize accuracy of temperature and pressure measurements
 - What if location for optimal pressure sensor placement corresponds to location of optimal temperature sensor placement?

What About Heterogeneous Sensors?

- What if we have heterogeneous sensors (agents)?
 - Different capabilities
 - (Potentially) different goals
- Example: pressure and temperature sensors
 - Set of temperature sensors and pressure sensors must be optimally located in a plant
 - Aim to maximize accuracy of temperature and pressure measurements
 - What if location for optimal pressure sensor placement corresponds to location of optimal temperature sensor placement?
 - Difference evaluations determine which sensor will be more beneficial for overall system performance!

Outline

- Motivation
- Critical Concepts
- Project Objectives
- Objective 1: Methodology and Results
- Objective 2: Methodology and Results
- Closing Remarks

Project Objectives

- 1. Develop performance metrics and algorithms for heterogeneous sensor networks
 - Quantify sensor network effectiveness
 - Allow tradeoffs in communication, computation, and sensing requirements
 - Develop objective functions for sensors (agents)
- 2. Demonstrate scalability, reconfigurability, and robustness of heterogeneous sensor network
 - Does it work with 10,000 sensors?
 - What if system level goals change?
 - What if sensors fail?

Outline

- Motivation
- Critical Concepts
- Project Objectives
- Objective 1: Methodology and Results
- Objective 2: Methodology and Results
- Closing Remarks

Defect Combination Problem

- Large set of disparate sensing devices
- Each device has noise and measurement error
- Which subset of devices should be activated for most accurate signal?

$$G = rac{\left|\sum_{i=1}^{N} n_i a_i
ight|}{\sum_{i=1}^{N} n_i}$$

Rankine Cycle Defect Combination Problem

- Apply DCP to each plant state in a Rankine cycle model
- Goal: attain accurate pressure and temperature measurements
- Agent feedback based on work and heat rates

Methodology

- Each agent has a probability distribution regarding which action it selects
- Probability distributions updated via cooperative coevolutionary algorithm
- As evolutionary time progresses, quality of solutions improves

Results: 100 Sensors

• Difference evaluations result in 9.1% of the error from G(z)

Results: 1000 Sensors

• Difference evaluations result in 1.2% of the error from G(z)

Outline

- Motivation
- Critical Concepts
- Project Objectives
- Objective 1: Methodology and Results
- Objective 2: Methodology and Results
- Closing Remarks

Objective 2

- Scalable: system must scale to thousands of devices
- Reconfigurable: system must adapt to failing devices

Methodology

- Each sensor in the network controlled by a single autonomous agent
- Each agent maintains a Q-table estimating value of sensing
- For each learning step:
 - Agents all take an action
 - Overall system performance computed
 - Agents update Q-tables
- As more learning steps occur, system performance improves

Scalability

Reconfigurability: 20% Noise, 20% Failures

RCDCP: 1,000 Agents, 20% Noise, 20% Failures

Kagan Tumer, Oregon State University

Insights

- System is extremely scalable
- System reconfigures with no performance loss after 20% sensor failure
- Network provides extremely accurate measurements, and quickly reconfigures after large changes in system conditions

Outline

- Motivation
- Critical Concepts
- Project Objectives
- Objective 1: Methodology and Results
- Objective 2: Methodology and Results
- Closing Remarks

Closing Remarks

- Proper objective functions improve system performance
- Networks can reconfigure after large disruptions
- Networks are robust to noise
- Networks are extremely scalable

Benefits of Our Approach

- Advanced Energy Systems
 - More efficient information collection
 - Quick response to sudden developments
 - Autonomous system reconfiguration
- Department of Energy and US Government
 - Smart grid
 - Coordinated search and rescue
 - Self-organizing nano/micro devices

Benefits of Our Approach

- Advanced Energy Systems
 - More efficient information collection
 - Quick response to sudden developments
 - Autonomous system reconfiguration
- Department of Energy and US Government
 - Smart grid
 - Coordinated search and rescue
 - Self-organizing nano/micro devices
- American Public
 - Smart homes
 - Smart highways
 - Smart airports

Oregon State

Publications Related to this Research

- 1. C. Holmes Parker, A. Agogino, and K. Tumer. Evolving distributed resource sharing for cubesat constellations. In *Proceedings of the Genetic and Evolutionary Computation Conference*, Philadelphia, PA, July 2012.
- 2. C. Holmes Parker, A. Agogino, and K. Tumer. Evolving large scale uav communi- cation systems. In *Proceedings* of the Genetic and Evolutionary Computation Conference, Philadelphia, PA, July 2012. **Best "Real World Applications" paper award.**
- 3. M. Colby, C. Holmes Parker, and K. Tumer. Coordination and control for large dis-tributed sensor networks. In *Future of Instrumentation International Workshop (FIIW- 2012)*. Gatlinburg, TN, October 2012.
- 4. M. Colby and K. Tumer. Multiagent reinforcement learning in a distributed sensor network with indirect feedback. In *In Proceedings of the Twelfth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013)*, Saint Paul, Minnesota.
- 5. M. Colby and K. Tumer. Performance and fiscal analysis of distributed sensor net- works in a power plant. In *AAMAS-2012 Workshop on Agent Technologies for Energy Systems*. Valencia, Spain, June 2012.
- 6. C. Holmes Parker and K. Tumer. Combining difference rewards and hierarchies for scaling to large multiagent system. In *AAMAS-2012 Workshop on Adaptive and Learning Agents*. Valencia, Spain, June 2012.
- 7. C. Roth. Agent objectives for evolving coordinated sensor networks. Master's thesis, University of Applied Sciences Offenburg, Germany, 2010.
- 8. C. Roth, M. Knudson, and K. Tumer. Agent fitness functions for evolving coordinated sensor networks. In *Proceedings of the Genetic and Evolutionary Computation Conference*, Dublin, Ireland, July 2011.

Questions?

Contact Info: Kagan Tumer

Oregon State University

kagan.tumer@oregonstate.edu

http://engr.oregonstate.edu/~ktumer

