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Motivation

e Where are we?
- Advanced energy systems becoming more interconnected
= Larger, distributed, more stochastic
- Computation pushed further down the pipe

= More powerful, cheaper, smaller devices
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e Where are we going?

- Hybrid systems
= Electrical/bio/mechanical devices
- Smart sensors

= Tens of thousands of tiny, simple, unreliable sensors
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Motivation

e Where are we?
- Advanced energy systems becoming more interconnected
= Larger, distributed, more stochastic
- Computation pushed further down the pipe

= More powerful, cheaper, smaller devices

e Where are we going?

- Hybrid systems
= Electrical/bio/mechanical devices
- Smart sensors

= Tens of thousands of tiny, simple, unreliable sensors

e What do we need to account for?
- Tens of thousands of sensors
- Failing sensors

- Dynamic and stochastic environments
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Key Challenge

How do we coordinate a very large number
of heterogeneous sensors and actuators so that they

collectively optimize a system objective function?
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Where Should Focus Be?

e New optimization algorithms?

 New control algorithms?
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Where Should Focus Be?

e New optimization algorithms?
No!

 New control algorithms?

e Focus on:
- How to control?
- What to optimize?

- What are “good system” properties?
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Cooperative Multiagent Systems

System Description:
- Each sensor has an agent objective it aims to optimize

- A system objective rates the entire system’s performance

Important issues:
How do we set agent objective functions?
How to update them?
Can agents compute those objective functions?
What happens when information is missing?
What happens when agents fail?

What happens when system goals change?
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Outline
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Critical Concepts

Evolutionary Algorithms

Cooperative Coevolutionary Algorithms
Multiagent Reinforcement Learning
Objectives in Self-Organizing Systems

Difference Evaluation Functions
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Evolutionary Algorithms

e Stochastic, population-based search algorithm
e Operators: Mutation, Fitness Assignment, Selection

e Work well in optimization problems where gradient information is
unavailable
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Evolutionary Algorithms

Mutation /
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Evolutionary Algorithms

e
/

Mutation Fitness assignment

Kagan Tumer, Oregon State University




Evolutionary Algorithms

Mutation

Selection
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Evolutionary Algorithms

Selection
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Cooperative Coevolutionary Algorithms

e Evolutionary algorithms need to be extended for many agents interacting
* Multiple coupled evolutionary algorithms in parallel

e Only significant difference from standard evolutionary algorithm is fitness
assignment stage
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Cooperative Coevolutionary Algorithms

Population 1

Population 2
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Cooperative Coevolutionary Algorithms

e Fitness of an agent is a function of two things:
- The agent’s policy

- How the collaborating agents act

e Fitness assignment in cooperative coevolutionary algorithms is very
context-dependent and subjective

e Credit assignment problem extremely difficult to solve
- Fitness function shaping
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Evolutionary Algorithms

Cooperative Coevolutionary Algorithms
Multiagent Reinforcement Learning
Objectives in Self-Organizing Systems

Difference Evaluation Functions
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Multiagent Reinforcement Learning

* A set of autonomous agents learns to coordinate/self-organize
 Model-free method to develop controllers for distributed systems

e Agents conduct trials repeatedly, and learn which actions yield high
performance
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Multiagent Reinforcement Learning

* Multiagent Reinforcement Learning:
- Each agent maintains a Q-table: maps actions to their expected utility

- After taking an action and receiving feedback, update Q-table:
Q(a) <« aR+(1-a)Q(a)

e Key problems in multiagent learning:
- Need to ensure agents don’t work at cross-purposes

- Need to ensure each agent contributes to the system

- Setting agent objectives is a nontrivial task, and choice of objective functions has
a large impact on system performance
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Example: Global Objective Function

e Each agent receives the overall system performance as feedback

e Problem: too much noise in the feedback signal

e Ateam of 100 agents is acting in an environment:
- 99 agents act optimally

- 1 agent does nothing

- Overall, the system performs well, and the agent that did nothing believes it
helped the system
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Example: Local Objective Function

e Each agent receives feedback based on local performance measures

e Problem: agents can become “greedy,” and act to harm the system

e Agents acting in a surveillance domain
- Local feedback based on “how much” information an agent collects

- Agents will learn to fight over the easy to observe measurements, rather than
distributing their efforts across the system
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Objectives in Self-Organizing Systems

 Multiagent Learning
- Each agent has a local objective it needs to optimize

- Coevolutionary algorithms: fitness function

- Reinforcement learning: reward signal

e We have seen that improper choice of fitness/reward can lead to poor
system performance
- Global feedback: too noisy

- Local feedback: can lead to agents working at cross-purposes

 What should to agent feedback be?
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Desirable Objective Function Properties

* g.(z) should be aligned with G(z)
- An agent which increases g;(z) also increases G(z)

- “Is what’s good for me good for the full system?”
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Desirable Objective Function Properties

* g.(z) should be aligned with G(z)
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Difference Evaluation Functions

e Difference evaluation function defined as:

2(2)=G(2)-G(Z_+c))
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Difference Evaluation Functions

e Difference evaluation function defined as:
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Difference Evaluation Functions

e Difference evaluation function defined as:
2(2)=G(2)-G(Z_+c;)

 g.(z) removes portions of G(z) not related to agent i
- Good signal to noise ratio = g,(z) is sensitive to agent i’s actions

* If gi(z), G(z) are differentiable, then:

0G(Z_.+c.) dg(z) JdG(2)
l l — O l —
0z - 0Z. 0Z.

I I I
- Increasing g,(z) increases G(z) = gi(z) is aligned with G(z)
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Where are We Now?

e Proper objective functions significantly improve system performance

» Difference evaluation functions are extremely scalable, up to network sizes
of 10,000 devices

 What about heterogeneous sensors?
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What About Heterogeneous Sensors?

 What if we have heterogeneous sensors (agents)?
- Different capabilities

- (Potentially) different goals

e Example: pressure and temperature sensors

Set of temperature sensors and pressure sensors must be optimally located in a
plant

Aim to maximize accuracy of temperature and pressure measurements

What if location for optimal pressure sensor placement corresponds to location
of optimal temperature sensor placement?
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What About Heterogeneous Sensors?

 What if we have heterogeneous sensors (agents)?
- Different capabilities

- (Potentially) different goals

e Example: pressure and temperature sensors

Set of temperature sensors and pressure sensors must be optimally located in a
plant

Aim to maximize accuracy of temperature and pressure measurements

What if location for optimal pressure sensor placement corresponds to location
of optimal temperature sensor placement?

Difference evaluations determine which sensor will be more beneficial for overall
system performance!
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Outline

e Project Objectives
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Project Objectives

Develop performance metrics and algorithms for heterogeneous sensor

networks
= Quantify sensor network effectiveness

= Allow tradeoffs in communication, computation, and sensing requirements

= Develop objective functions for sensors (agents)

Demonstrate scalability, reconfigurability, and robustness of
heterogeneous sensor network
= Does it work with 10,000 sensors?

= What if system level goals change?

= What if sensors fail?
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Defect Combination Problem

e Large set of disparate sensing devices
e Each device has noise and measurement error

* Which subset of devices should be activated for most accurate signal?
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RanKkine Cycle Defect Combination Problem

e Apply DCP to each plant state in a Rankine cycle model
e Goal: attain accurate pressure and temperature measurements

e Agent feedback based on work and heat rates
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Methodology

e Each agent has a probability distribution regarding which action it selects
e Probability distributions updated via cooperative coevolutionary algorithm

e As evolutionary time progresses, quality of solutions improves
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Results: 100 Sensors
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e Difference evaluations result in 9.1% of the error from G(z)
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Results: 1000 Sensors
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e Difference evaluations result in 1.2% of the error from G(z)
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Outline

e Objective 2: Methodology and Results
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Objective 2

e Scalable: system must scale to thousands of devices

e Reconfigurable: system must adapt to failing devices
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Methodology

Each sensor in the network controlled by a single autonomous agent
Each agent maintains a Q-table estimating value of sensing

For each learning step:
- Agents all take an action

- Overall system performance computed

- Agents update Q-tables

As more learning steps occur, system performance improves
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Scalability
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Reconfigurability: 20% Noise, 20% Failures
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RCDCP: 1,000 Agents, 20% Noise, 20% Failures
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Insights

e System is extremely scalable
e System reconfigures with no performance loss after 20% sensor failure

* Network provides extremely accurate measurements, and quickly
reconfigures after large changes in system conditions
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Outline

e Closing Remarks
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Closing Remarks

Proper objective functions improve system performance
Networks can reconfigure after large disruptions
Networks are robust to noise

Networks are extremely scalable
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Benefits of Our Approach

e Advanced Energy Systems
- More efficient information collection

- Quick response to sudden developments

w Smart Grid (ModernGrid,
. . IntelliGrid): New centralized plant,
- bles, distributed tion,
Autonomous system reconfiguration BRI Coovtien dathued geersten
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* Department of Energy and US Government 7
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- Coordinated search and rescue
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- Self-organizing nano/micro devices
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