Implementation and Refinement of a Comprehensive Model for Dense Granular Flows

Sebastian Chialvo, Yile Gu and Sankaran Sundaresan Princeton University

Monday, May 19, 2014

This work is supported by DOE-UCR grant DE-FE0006932.

Ubiquitous in nature and widely encountered in industrial processes,

- Ubiquitous in nature and widely encountered in industrial processes,
- Complex behavior: multiple regimes of rheology, jamming

- Ubiquitous in nature and widely encountered in industrial processes,
- Complex behavior: multiple regimes of rheology, jamming

Shear flow of frictional particles in a periodic box

- Ubiquitous in nature and widely encountered in industrial processes,
- Complex behavior: multiple regimes of rheology, jamming

Shear flow of frictional particles in a periodic box

Shear flow of frictional particles with bounding walls

Computational methodology

- Simulate particle dynamics of homogeneous assemblies under simple shear using discrete element method (DEM).
 - Linear spring-dashpot with frictional slider.
 - 3D periodic domain without gravity
 - Lees-Edwards boundary conditions
- Extract stress and structural information by averaging.

LAMMPS code. http://lammps.sandia.gov S. J. Plimpton. J Comp Phys, 117, 1-19 (1995)

Flow regime map: What regimes of flow are observed in shear flow of soft, frictional, non-cohesive particles?

- Flow regime map: What regimes of flow are observed in shear flow of soft, frictional, non-cohesive particles?
- Effect of cohesion: How does the addition of modest level of cohesion, such as in Geldart Group A particles change the flow regime map?

- Flow regime map: What regimes of flow are observed in shear flow of soft, frictional, non-cohesive particles?
- Effect of cohesion: How does the addition of modest level of cohesion, such as in Geldart Group A particles change the flow regime map?
- Rheological models (non-cohesive particles)

- Flow regime map: What regimes of flow are observed in shear flow of soft, frictional, non-cohesive particles?
- Effect of cohesion: How does the addition of modest level of cohesion, such as in Geldart Group A particles change the flow regime map?
- Rheological models (non-cohesive particles)
 - Steady state models that bridge various regimes

- Flow regime map: What regimes of flow are observed in shear flow of soft, frictional, non-cohesive particles?
- Effect of cohesion: How does the addition of modest level of cohesion, such as in Geldart Group A particles change the flow regime map?
- Rheological models (non-cohesive particles)
 - Steady state models that bridge various regimes
 - Modified kinetic theory

- Flow regime map: What regimes of flow are observed in shear flow of soft, frictional, non-cohesive particles?
- Effect of cohesion: How does the addition of modest level of cohesion, such as in Geldart Group A particles change the flow regime map?
- Rheological models (non-cohesive particles)
 - Steady state models that bridge various regimes
 - Modified kinetic theory
- Wall Boundary conditions

$$\phi = 0.5$$

$$\phi = 0.52$$

$$\phi = 0.54$$

$$\phi = 0.55$$

$$\phi = 0.56$$

$$\phi = 0.57$$

$$\phi = 0.578$$

$$\phi = 0.584$$

$$\phi = 0.588$$

$$\phi = 0.584$$

$$\phi = 0.618$$

 $\phi_c = 0.587$

- Computational
 - C. S. Campbell, J. Fluid Mech. 465, 261 (2002).
 - T. Hatano, J. Phys. Soc. Japan 77, 123002 (2008).
- Experimental
 - K. N. Nordstrom et al. Phys. Rev. Lett. 105, 175701 (2010).

 $\phi = 0.5$ $\phi = 0.52$ $\phi = 0.54$ $\phi = 0.55$ $\phi = 0.56$ $\phi = 0.57$ $\phi = 0.578$ $\phi = 0.584$ $\phi = 0.588$ $\phi = 0.584$ $\phi = 0.618$

 $\phi_c = 0.587$

- Computational
 - C. S. Campbell, J. Fluid Mech. 465, 261 (2002).
 - T. Hatano, J. Phys. Soc. Japan 77, 123002 (2008).
- Experimental
 - K. N. Nordstrom et al. Phys. Rev. Lett. 105, 175701 (2010).

$$\phi = 0.5$$

$$\phi = 0.52$$

$$\phi = 0.54$$

$$\phi = 0.55$$

$$\phi = 0.56$$

$$\phi = 0.57$$

$$\phi = 0.57$$

$$\phi = 0.584$$

$$\phi = 0.588$$

$$\phi = 0.594$$

$$\phi = 0.6$$

 $\phi = 0.618$

 $\phi_c = 0.587$

- Computational
 - C. S. Campbell, J. Fluid Mech. 465, 261 (2002).
 - T. Hatano, J. Phys. Soc. Japan 77, 123002 (2008).
- Experimental
 - K. N. Nordstrom et al. Phys. Rev. Lett. 105, 175701 (2010).

- Computational
 - C. S. Campbell, J. Fluid Mech. 465, 261 (2002).
 - T. Hatano, J. Phys. Soc. Japan 77, 123002 (2008).
- Experimental
 - K. N. Nordstrom et al. Phys.
 Rev. Lett. 105, 175701 (2010).
- Critical volume fraction ϕ_c and its flow curve $\hat{p} = \alpha \hat{\gamma}^m$ distinguish the three flow regimes.

- Computational
 - C. S. Campbell, J. Fluid Mech. 465, 261 (2002).
 - T. Hatano, J. Phys. Soc. Japan 77, 123002 (2008).
- Experimental
 - K. N. Nordstrom et al. Phys.
 Rev. Lett. 105, 175701 (2010).
- Critical volume fraction ϕ_c and its flow curve $\hat{p} = \alpha \hat{\gamma}^m$ distinguish the three flow regimes.
- Role of particle softness:
 - Large $k \implies$ quasi-static or inertial regime
 - Small $k \implies$ intermediate regime

Scaled pressure and shear rate[†]:

$$p^* = \hat{p}/|\phi - \phi_c|^a$$
$$\dot{\gamma}^* = \hat{\dot{\gamma}}/|\phi - \phi_c|^b$$

Choose exponents:

$$\begin{array}{c} a=2/3 \\ b=4/3 \end{array} \right\} \ \, \text{Independent} \\ \text{of } \mu \\ \end{array}$$

• Three pressure asymptotes:

Scaled pressure and shear rate[†]:

$$p^* = \hat{p}/|\phi - \phi_c|^a$$
$$\dot{\gamma}^* = \hat{\dot{\gamma}}/|\phi - \phi_c|^b$$

Choose exponents:

$$\begin{array}{c} a=2/3 \\ b=4/3 \end{array} \right\} \ \, \mbox{Independent} \\ \mbox{of } \mu \end{array}$$

$$\frac{p_i}{|\phi - \phi_c|^{2/3}} = \alpha_i \left[\frac{\dot{\gamma}}{|\phi - \phi_c|^{4/3}} \right]^{m_i}$$

• Three pressure asymptotes:

Scaled pressure and shear rate[†]:

$$p^* = \hat{p}/|\phi - \phi_c|^a$$
$$\dot{\gamma}^* = \hat{\dot{\gamma}}/|\phi - \phi_c|^b$$

Choose exponents:

$$\begin{array}{c} a = 2/3 \\ b = 4/3 \end{array} \right\} \begin{array}{c} \text{Independent} \\ \text{of } \mu \end{array}$$

$$\frac{p_i}{|\phi - \phi_c|^{2/3}} = \alpha_i \left[\frac{\dot{\gamma}}{|\phi - \phi_c|^{4/3}} \right]^{m_i}$$

• Transitions between regimes blended smoothly

Three pressure asymptotes:

Scaled pressure and shear rate[†]:

$$p^* = \hat{p}/|\phi - \phi_c|^a$$
$$\dot{\gamma}^* = \hat{\dot{\gamma}}/|\phi - \phi_c|^b$$

Choose exponents:

$$\begin{array}{c} a=2/3 \\ b=4/3 \end{array} \right\} \ \, \text{Independent} \\ \text{of } \mu \\ \end{array}$$

$$\frac{p_i}{|\phi - \phi_c|^{2/3}} = \alpha_i \left[\frac{\dot{\gamma}}{|\phi - \phi_c|^{4/3}} \right]^{m_i}$$

• Transitions between regimes blended smoothly

S. Chialvo et al., PRE 85, 021305 (2012).

Dense phase rheology: Summary

- Flow regime map: What regimes of flow are observed in shear flow of soft, frictional, non-cohesive particles? (completed)
- Effect of cohesion: How does the addition of modest level of cohesion, such as in Geldart Group A particles change the flow regime map?
- Rheological models (non-cohesive particles)
 - Steady state models that bridge various regimes (completed)
 S. Chialvo et al. PRE 85, 021305 (2012).
 - Modified kinetic theory
- Wall Boundary conditions

Kinetic-theory models

- Traditionally use kinetic-theory (KT) models for modeling inertial regime
- Most KT models designed for <u>dilute flows</u> of <u>frictionless particles</u>

Kinetic-theory models

- Traditionally use kinetic-theory (KT) models for modeling inertial regime
- Most KT models designed for <u>dilute flows</u> of <u>frictionless particles</u>

 Can KT model be modified to capture denseregime scalings?

Kinetic-theory models

- Traditionally use kinetic-theory (KT) models for modeling inertial regime
- Most KT models designed for <u>dilute flows</u> of <u>frictionless particles</u>

- Can KT model be modified to capture denseregime scalings?
- Seek modifications to KT model of Garzó-Dufty (1999)[†]

Kinetic theory equations

Garzó-Dufty kinetic theory for simple shear flow

Pressure

$$p = \rho_s H(\phi, g_0(\phi))T$$

Energy dissipation rate

$$\Gamma = \frac{\rho_s}{d} K(\phi, e) T^{3/2}$$

Shear stress

$$\tau = \rho_s d\dot{\gamma} J(\phi) \sqrt{T}$$

Steady-state energy balance

$$\Gamma - \tau \dot{\gamma} = 0$$

Kinetic theory equations

Garzó-Dufty kinetic theory for simple shear flow

Pressure

$$p = \rho_s H(\phi, g_0(\phi))T$$

Energy dissipation rate

$$\Gamma = \frac{\rho_s}{d} K(\phi, e) T^{3/2}$$

Shear stress

$$\tau = \rho_s d\dot{\gamma} J(\phi) \sqrt{T}$$

Steady-state energy balance

$$\Gamma - \tau \dot{\gamma} = 0$$

Important quantities:

- Radial distribution function at contact $g_0 = g_0(\phi)$
 - Measure of packing
 - Diverges at random close packing
- Restitution coefficient e
 - Measure of dissipation
 - Has strong effect on temperature

Kinetic theory equations

Garzó-Dufty kinetic theory for simple shear flow

Pressure

$$p = \rho_s H(\phi, g_0(\phi))T$$

Energy dissipation rate

$$\Gamma = \frac{\rho_s}{d} K(\phi, e) T^{3/2}$$

Shear stress

$$\tau = \rho_s d\dot{\gamma} J(\phi) \sqrt{T}$$

Steady-state energy balance

$$\Gamma - \tau \dot{\gamma} = 0$$

Modifications (in red)

$$p = \rho_s H(\phi, g_0(\phi, \phi_c(\mu)))T$$

$$\Gamma = \frac{\rho_s}{d} K(\phi, e_{\text{eff}}(e, \mu)) T^{3/2} \delta_{\Gamma}$$

$$\tau = \tau_s + \rho_s d\dot{\gamma} J(\phi) \sqrt{T} \delta_{\tau}$$

$$\Gamma - (\tau - \tau_s)\dot{\gamma} = 0$$

Dense phase rheology: Summary

- Flow regime map: What regimes of flow are observed in shear flow of soft, frictional, non-cohesive particles? (completed)
- Effect of cohesion: How does the addition of modest level of cohesion, such as in Geldart Group A particles change the flow regime map?
- Rheological models (non-cohesive particles)
 - Steady state models that bridge various regimes (completed)
 S. Chialvo et al. PRE 85, 021305 (2012).
 - Modified kinetic theory (completed)
 - S. Chialvo & S. Sundaresan, Phy. of Fluids, 25, 070603 (2013).
- Wall Boundary conditions

$$\phi = 0.51$$

$$\mathbf{\nabla}$$
 $\phi = 0.53$

$$\phi = 0.6$$

$$\phi = 0.61$$

+
$$\phi = 0.62$$

$$\star$$
 $\phi=0.63$

$$\phi = 0.51$$
 $\phi = 0.53$

$$ightharpoonup \phi = 0.6$$

$$\phi = 0.61$$

$$+ \phi = 0.62$$

$$\star$$
 $\phi=0.63$

$$Bo^* \equiv F_{vdW}^{\text{max}} / kd \approx A / 24ks_{\text{min}}^2$$

$$\phi = 0.51$$
 $\phi = 0.53$

$$\phi = 0.61$$

$$+ \phi = 0.62$$

$$\star$$
 $\phi=0.63$

$$Bo^* \equiv F_{vdW}^{\text{max}} / kd \approx A / 24ks_{\text{min}}^2$$

$$\phi = 0.51$$

$$\mathbf{\nabla} \quad \phi = 0.53$$

$$\qquad \phi = 0.55$$

$$ightharpoonup \phi = 0.6$$

$$\phi = 0.61$$

$$+ \phi = 0.62$$

$$\star$$
 $\phi = 0.63$

$$Bo^* \equiv F_{vdW}^{\text{max}} / kd \approx A / 24ks_{\text{min}}^2$$

Quasi-static, inertial and intermediate regimes persist. A new cohesive regime emerges below the jamming conditions for equivalent non-cohesive particles.

$$\phi = 0.51$$

$$\phi = 0.53$$

$$\Delta$$
 $\phi = 0.59$

$$ightharpoonup \phi = 0.6$$

$$\phi = 0.61$$

$$+ \phi = 0.62$$

$$\phi = 0.63$$

Cohesive particles: Stress ratio

cohesion increases effective stress ratio

$$\phi = 0.51$$

$$\mathbf{\nabla} \quad \phi = 0.53$$

$$\Delta \phi = 0.59$$

$$ightharpoons \phi = 0.6$$

$$\phi = 0.61$$

$$+ \phi = 0.62$$

$$\star$$
 $\phi = 0.63$

Dense phase rheology: Summary

- Flow regime map: What regimes of flow are observed in shear flow of soft, frictional, non-cohesive particles? (completed)
- Effect of cohesion: How does the addition of modest level of cohesion, such as in Geldart Group A particles change the flow regime map? (work nearly complete, manuscript under revision)
- Rheological models (non-cohesive particles)
 - Steady state models that bridge various regimes (completed)
 S. Chialvo et al. PRE 85, 021305 (2012).
 - Modified kinetic theory
 S. Chialvo & S. Sundaresan, Phy. of Fluids, 25, 070603 (2013).
- Wall Boundary conditions

Boundary vs. core regions

Core region

- comprises the bulk of the flow
- exhibits uniform flow properties
- obeys local, inertial-number rheological models*†

Boundary layer

- lies within ~10d of each wall
- exhibits large variations in field variables
- due to nonlocal conduction of pseudothermal energy

Boundary vs. core regions

Core region

- comprises the bulk of the flow
- exhibits uniform flow properties
- obeys local, inertial-number rheological models*†

Boundary layer

- lies within ~I0d of each wall
- exhibits large variations in field variables
- due to nonlocal conduction of pseudothermal energy

Questions:

- How to define the slip velocity to get simple scaling to work?
- What if we want to avoid the need to resolve the small boundary layer?

*S. Chialvo et al. PRE 85, 021305 (2012). †F. da Cruz et al. PRE 72, 021309 (2005).

14/23

Core rheology

Core region

- comprises the bulk of the flow
- exhibits uniform flow properties
- obeys local, inertial-number rheological models*†
 - interparticle friction coefficient μ affects yield stress ratio η_s
 - wall friction coefficient μ_w has no effect on rheological model

Inertial number:

$$I_{\rm core} \equiv \frac{\dot{\gamma}_{\rm core} d}{\sqrt{p_{\rm core}/\rho_s}}$$

$$I_{\rm core} pprox f(\phi)$$
 for $\phi < \phi_c(\mu)$

Shear stress ratio:

$$\eta_{\rm core} \equiv \frac{\tau_{\rm core}}{p_{\rm core}}$$

$$\eta_{\rm core} = \eta_s(\mu) + \alpha I_{\rm core}$$

*S. Chialvo et al. PRE 85, 021305 (2012). †F. da Cruz et al. PRE 72, 021309 (2005).

15/23

Definitions of slip velocity

Slip velocity:
$$v_{\rm slip}^{(\cdot)} = v^{(\cdot)} - v_w$$
Some solids velocity Velocity at the wall of wall

- Options for velocity $v^{(\cdot)}$:
 - a) 'Standard' slip velocity: based on translational velocity of particles at wall

$$v_{\rm slip}^{\rm tr} = v^{\rm tr} - v_w$$

b) 'Apparent' slip velocity: based on extrapolated velocity from core region to wall

$$v_{\rm slip}^{\rm app} = v^{\rm app} - v_w$$

$$v^{\text{app}} \equiv \dot{\gamma}_{\text{core}} H/2$$

= $v^{\text{tr}} - v'$

Definitions of slip velocity

- Slip velocity: $v_{\rm slip}^{(\cdot)} = v_{\bullet}^{(\cdot)}$
 - $v_{\text{slip}}^{(\cdot)} = v^{(\cdot)} v_w$

Some solids velocity at the wall

Velocity of wall

- Options for velocity $v^{(\cdot)}$:
 - c) 'Surface' slip velocity:
 based on relative velocity of
 particle surface at wall

$$v_{\rm slip}^{\rm surf} = v^{\rm surf} - v_w$$

$$v^{\rm surf} = v^{\rm tr} \pm \omega d/2$$

Definitions of slip velocity

Slip velocity:
$$v_{\rm slip}^{(\cdot)} = v^{(\cdot)} - v_w$$
Some solids velocity velocity at the wall of wall

- Options for velocity $v^{(\cdot)}$:
 - c) 'Surface' slip velocity: based on relative velocity of particle surface at wall

$$v_{\rm slip}^{\rm surf} = v^{\rm surf} - v_w$$

$$v_{\rm surf}^{\rm surf} = v^{\rm tr} \pm \omega d/2$$

Question:

Is one (or more) of these slip velocities amenable to a scaling collapse?

Velocity scales

velocity in the core

Dimensionless slip velocity:

$$I_{
m slip}^{(\cdot)} = rac{v_{
m slip}}{v_{
m char}} \longleftarrow$$
 Some slip velocity

- Options for $v_{\rm char}$:
 - a) shear-rate-based[†]:

$$v_{\rm char} = \dot{\gamma} d$$

b) stress-based*:

$$v_{\rm char} = \sqrt{p/\rho_s}$$
 or $\sqrt{\tau/\rho_s}$

c) viscosity-based:

[†]Artoni et al. PRL 108, 238002 (2012).

*Artoni et al. PRE 79, 031304 (2009).

DEM results: dimensionless slip velocity

- Full collapse achieved by scaling of $\eta_{\rm core} \eta_s$:
 - $\eta_{\text{wall}} = \mu_w + \mu_w^*$
 - Critical wall friction coefficient $\mu_w^* \approx 0.33$ separates partial- and full-slip regimes †
- Possible model form:

$$y = \frac{1.5x^{2/3}}{(1-x)^5}$$

 This form still requires solving for rotational velocity and boundary layer

$$\begin{cases} v_{\text{slip}}^{\text{surf}} = v^{\text{surf}} - v_w \\ v^{\text{surf}} = v^{\text{tr}} \pm \omega d/2 \end{cases}$$

DEM results: dimensionless slip velocity

• Extend $v_{
m slip}^{
m surf}$ model to coarsely-resolved, translation-only problems

$$I_{
m slip}^{
m app} = I_{
m slip}^{
m surf} + I^{
m rot} + I'$$
 from last fitted slide below

$$I^{
m rot} = rac{mI'}{(\eta_s - \eta_{s0})^2}$$
 (see figure)

$$I' = \alpha (\eta - \eta_s)^{\beta}$$

$$\eta_{s0} = \eta_s(\mu = 0) = 0.105$$

 Model can be coupled with simple rheological models (e.g. inertial-number models)

20/23

Dense phase rheology: Summary

- Flow regime map: What regimes of flow are observed in shear flow of soft, frictional, non-cohesive particles? (completed)
- Effect of cohesion: How does the addition of modest level of cohesion, such as in Geldart Group A particles change the flow regime map? (work nearly complete, manuscript under revision)
- Rheological models (non-cohesive particles)
 - Steady state models that bridge various regimes (completed)
 S. Chialvo et al. PRE 85, 021305 (2012).
 - Modified kinetic theory (completed)
 S. Chialvo & S. Sundaresan, Phy. of Fluids, 25, 070603 (2013).
- Wall Boundary conditions (work nearly complete, manuscript under preparation)

Research questions: Looking ahead

- Complete wall boundary condition manuscript (Sebastian Chialvo)
- Implementation of the modified kinetic theory and the wall BCs in a CFD code (such as MFIX) and testing. Will be collaborating with NETL researchers
- Implementation of the steady-shear rheology model in MFIX and testing already completed

Summary and future work

- Developed rheological model spanning three regimes of dense granular flow
- Proposed modified kinetic theory to capture rheological behavior for dense and dilute systems
- Developed boundary-condition model for dense flows
- Will soon implement MKT and wall BCs into MFIX continuum solver and test