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Shear flow of 
frictional particles
in a periodic box
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Computational methodology

• Simulate particle dynamics of homogeneous assemblies 
under simple shear using discrete element method (DEM).

‣ Linear spring-dashpot with
frictional slider.

‣ 3D periodic domain 
without gravity

‣ Lees-Edwards boundary 
conditions

• Extract stress and structural
information by averaging.

3LAMMPS code. http://lammps.sandia.gov S. J. Plimpton. J Comp Phys, 117, 1-19 (1995)
Wednesday, May 28, 2014
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• Role of particle softness:
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 intermediate regime
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S. Chialvo et al.,  PRE 85, 021305 (2012).
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Dense phase rheology: Summary

Flow regime map: What regimes of flow are observed in shear 
flow of soft, frictional, non-cohesive particles?

Effect of cohesion: How does the addition of modest level of 
cohesion, such as in Geldart Group A particles change the 
flow regime map?  

Rheological models (non-cohesive particles)
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Wall Boundary conditions 

7

(completed)

(completed)
S. Chialvo et al. PRE  85, 021305 (2012). 
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Kinetic-theory models

8†Garzó, V., Dufty, J.W.  Phys. Rev. E 59, 5895 (1999).

• Seek modifications to KT model 
of Garzó-Dufty (1999)†

• Traditionally use kinetic-theory (KT) models 
for modeling inertial regime

• Most KT models designed for dilute flows of
frictionless particles

• Can KT model be modified to capture dense-
regime scalings?
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Kinetic theory equations

Garzó-Dufty kinetic theory for simple shear flow

9

Pressure

Steady-state energy balance

Energy dissipation rate

Shear stress

p = ρsH(φ, g0(φ))T

τ = ρsdγ̇J(φ)
√
T

Γ =
ρs
d
K(φ, e)T 3/2

Γ− τ γ̇ = 0
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Garzó-Dufty kinetic theory for simple shear flow

9

Pressure

Steady-state energy balance

Energy dissipation rate

Shear stress

p = ρsH(φ, g0(φ))T

τ = ρsdγ̇J(φ)
√
T

Γ =
ρs
d
K(φ, e)T 3/2

Γ− τ γ̇ = 0

Important quantities:

• Radial distribution function 
at contact

‣ Measure of packing

‣ Diverges at random 
close packing 

• Restitution coefficient

‣ Measure of dissipation

‣ Has strong effect on 
temperature

g0 = g0(φ)

e
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Garzó-Dufty kinetic theory for simple shear flow

9

Pressure

Steady-state energy balance

Energy dissipation rate

Shear stress

p = ρsH(φ, g0(φ))T

τ = ρsdγ̇J(φ)
√
T

Γ =
ρs
d
K(φ, e)T 3/2

Γ− τ γ̇ = 0

Γ =
ρs
d
K(φ, eeff(e, µ))T

3/2δΓ

τ = τs + ρsdγ̇J(φ)
√
T δτ

Γ− (τ − τs)γ̇ = 0

Modifications (in red)

p = ρsH(φ, g0(φ,φc(µ)))T
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Dense phase rheology: Summary

Flow regime map: What regimes of flow are observed in shear 
flow of soft, frictional, non-cohesive particles?

Effect of cohesion: How does the addition of modest level of 
cohesion, such as in Geldart Group A particles change the 
flow regime map?  

Rheological models (non-cohesive particles)

Steady state models that bridge various regimes

Modified kinetic theory                                                                    

S. Chialvo & S. Sundaresan, Phy. of Fluids, 25, 070603 (2013). 

Wall Boundary conditions 
10

(completed)

(completed)

(completed)
S. Chialvo et al. PRE  85, 021305 (2012). 
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Cohesive particles
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Cohesive particles

11

Bo*=0 Bo*=5.0E-06

Quasi-static, inertial and intermediate 
regimes persist. A new cohesive regime 
emerges below the jamming conditions 
for equivalent non-cohesive particles. 

Bo*=5.0E-05
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Cohesive particles: Stress ratio

cohesion increases effective 
stress ratio

12

σ = pI− pηŜ

Bo*=0 Bo*=5.0E-06

Bo*=5.0E-05
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Dense phase rheology: Summary

Flow regime map: What regimes of flow are observed in shear 
flow of soft, frictional, non-cohesive particles?

Effect of cohesion: How does the addition of modest level of 
cohesion, such as in Geldart Group A particles change the 
flow regime map? (work nearly complete, manuscript under 
revision) 

Rheological models (non-cohesive particles)

Steady state models that bridge various regimes

Modified kinetic theory                                                                    
S. Chialvo & S. Sundaresan, Phy. of Fluids, 25, 070603 (2013). 

Wall Boundary conditions  
13

(completed)

(completed)

(completed)

S. Chialvo et al. PRE  85, 021305 (2012). 
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Boundary vs. core regions

• comprises the bulk of the flow

• exhibits uniform flow properties

• obeys local, inertial-number 
rheological models*†

Core region
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*S. Chialvo et al. PRE 85, 021305 (2012).  †F. da Cruz et al.  PRE 72, 021309 (2005).

• lies within ~10d of each wall

• exhibits large variations in field 
variables

• due to nonlocal conduction of 
pseudothermal energy

Boundary layer
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• lies within ~10d of each wall

• exhibits large variations in field 
variables

• due to nonlocal conduction of 
pseudothermal energy

Boundary layer

Questions:

• How to define the slip velocity to get simple scaling to work? 
• What if we want to avoid the need to resolve the small boundary layer?
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Core rheology

Core region
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Inertial number:

Shear stress ratio:

*S. Chialvo et al. PRE 85, 021305 (2012).  †F. da Cruz et al.  PRE 72, 021309 (2005).
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• exhibits uniform flow properties

• obeys local, inertial-number 
rheological models*†

‣ interparticle friction coefficient 
affects yield stress ratio

‣ wall friction coefficient       has 
no effect on rheological model
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Definitions of slip velocity

• Slip velocity: 
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a) ‘Standard’ slip velocity:
based on translational velocity 
of particles at wall

• Options for velocity      : 

b) ‘Apparent’ slip velocity:
based on extrapolated velocity 
from core region to wall

v
app ≡ γ̇coreH/2

vappslip = vapp − vw

Some solids velocity 
at the wall

Velocity 
of wall

v(·)slip = v(·) − vw

v(·)

vtrslip = vtr − vw

Real velocity

Apparent 
velocity

= vtr − v�
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Definitions of slip velocity

• Slip velocity: 
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c) ‘Surface’ slip velocity:
based on relative velocity of 
particle surface at wall

• Options for velocity      : 

Some solids velocity 
at the wall

Velocity 
of wall

v(·)slip = v(·) − vw

v(·)

vsurfslip = vsurf − vw

Question:

• Is one (or more) of these slip velocities amenable to a scaling collapse?

Rotational velocity

vsurf = vtr ± ωd/2
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• Dimensionless slip velocity: 

• Options for         : 
Some characteristic 
velocity in the core

Some slip velocity
I(·)slip =

v(·)slip

vchar
vchar

vchar = γ̇d

vchar =
�
p/ρs

�
τ/ρsor

(c)
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(b)(a)

a) shear-rate-based†:

b) stress-based*:

c) viscosity-based:
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†Artoni et al.  PRL 108, 238002 (2012). *Artoni et al.  PRE 79, 031304 (2009).
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DEM results:  dimensionless slip velocity

• Possible model form:

• Full collapse achieved by 
scaling of                 :

‣  

‣ Critical wall friction 
coefficient                
separates partial- and full-
slip regimes†

µ∗
w

†Z. Shojaaee et al.  PRE 86, 011302 (2012).

• This form still requires solving for 
rotational velocity and boundary layer

µ∗
w ≈ 0.33
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w
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• Extend        model to 
coarsely-resolved, 
translation-only problems

DEM results:  dimensionless slip velocity

vsurfslip

I � = α(η − ηs)
β

Iappslip = Isurfslip + Irot + I �

� �

from last
 slide

fitted
below

(see figure)

• Model can be coupled with simple rheological 
models (e.g. inertial-number models)
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Dense phase rheology: Summary

Flow regime map: What regimes of flow are observed in shear 
flow of soft, frictional, non-cohesive particles?

Effect of cohesion: How does the addition of modest level of 
cohesion, such as in Geldart Group A particles change the 
flow regime map? (work nearly complete, manuscript under 
revision) 

Rheological models (non-cohesive particles)

Steady state models that bridge various regimes

Modified kinetic theory                                                                    
S. Chialvo & S. Sundaresan, Phy. of Fluids, 25, 070603 (2013). 

Wall Boundary conditions (work nearly complete, manuscript 
under preparation) 21

(completed)

(completed)

(completed)

S. Chialvo et al. PRE  85, 021305 (2012). 
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Research questions: Looking ahead

Complete wall boundary condition 
manuscript  (Sebastian Chialvo)

Implementation of the modified kinetic 
theory and the wall BCs in a CFD code 
(such as MFIX) and testing.  Will be 
collaborating with NETL researchers

Implementation of the steady-shear 
rheology model in MFIX and testing - 
already completed

22
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Summary and future work

• Developed rheological model spanning three regimes 
of dense granular flow

• Proposed modified kinetic theory to capture 
rheological behavior for dense and dilute systems

• Developed boundary-condition model for dense 
flows 

• Will soon implement MKT and wall BCs into MFIX 
continuum solver and test
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