

2014 NETL Crosscutting Research Review Meeting May 19–23, 2014, Pittsburgh, PA

Mechanically Activated Combustion Synthesis of MoSi₂-Based Composites

Principal Investigator: Evgeny Shafirovich

Graduate Research Assistant: Mohammad S. Alam

Organization: The University of Texas at El Paso

Grant: DE-FE-0008470

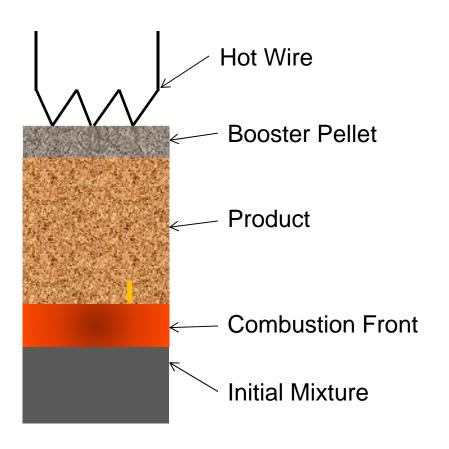
Cost-share: Climax Molybdenum, Inc.

Use of MoSi₂- Based Materials

- ☐ High-temperature heating elements (up to 1800°C)
- Microelectronics

Heating elements made of MoSi₂

- ☐ Structural materials for advanced boilers and turbines (>1100°C)
 - MoSi₂ melting point: 2030°C
 - MoSi₂ has excellent high-temperature oxidation resistance



MoSi₂ Problems and Solutions

- ☐ Problems for use in **structural** applications:
 - Low fracture toughness at room temperature
 - Low strength at elevated temperatures
- ☐ Mechanical properties can be improved by adding more Mo and forming Mo₅Si₃ (T₁ phase)
 - Improves mechanical properties
 - Decreases oxidation resistance
- □ Oxidation resistance can be improved by adding B and forming Mo₅SiB₂ (T₂ phase)
 - Mo₅SiB₂ forms a borosilicate glass layer

Self-propagating Hightemperature Synthesis (SHS)

Advantages of SHS:

- Short processing time
- Low energy consumption
- Simple equipment
- Tailored microstructure and properties
- High purity of the products

SHS: Problem No. 1

- □ Increasing Mo content (to obtain Mo_5Si_3 or Mo_5SiB_2) decreases the adiabatic flame temperature impossible to ignite.
- □ Solution: Mechanically activated SHS (MASHS) adds a high-energy ball milling step before combustion.
 - Intermixing of reactive components on a nanometric scale
 - Increases the contact surface area and destroys the oxide layer.
 - Improves the reaction kinetics, leading to an easier ignition.

SHS: Problem No. 2

- ☐ High porosity and low density
- **□** Solution: SHS compaction
 - Quasi-isostatic pressure is applied through a pressuretransmitting medium
 - Press while products still hot
 - Decreases porosity and increases density

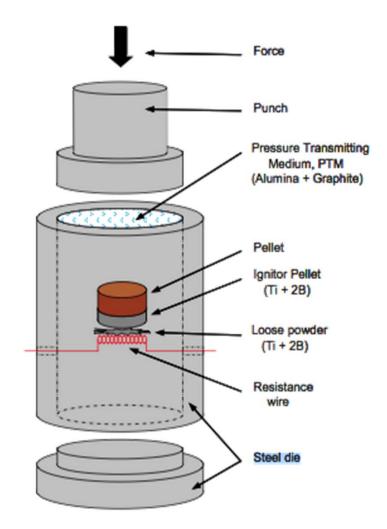


Image: Martinez Pacheco et al., *Appl. Phys. A* 90 (2008) 159.

☐ Goal:

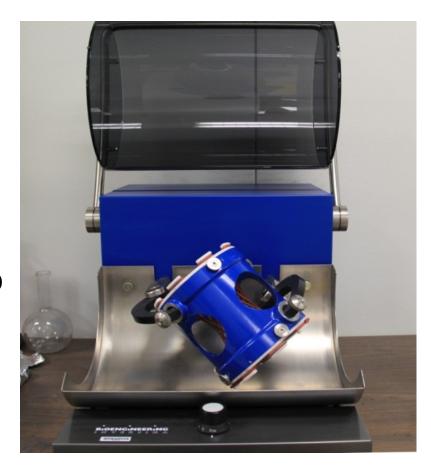
 To develop a novel and competitive processing route for manufacturing molybdenum silicides and borosilicides: MASHS-compaction.

☐ Objectives:

- To explore the feasibility of fabricating MoSi₂-Mo₅Si₃ and Mo₅SiB₂-based composites by mechanically activated SHS.
- To explore the feasibility of fabricating dense Mo-Si and Mo-Si-B materials using SHS compaction.
- To examine mechanical and oxidation properties of the obtained materials.

Synthesis of $MoSi_2$ - Mo_5Si_3 Composites

Mixing



□ Reactants

- Mo, D_{VM} = 17 µm, D_{50} = 11 µm
- Si, D_{VM} = 10 μ m, D_{50} = 8 μ m

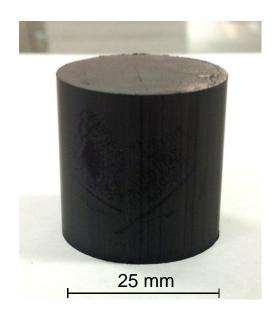
☐ Mixture ratio corresponds to the product composition:

 $10 - 50 \text{ vol}\% \text{ Mo}_5 \text{Si}_3$ The balance MoSi₂

Three-dimensional inversion kinematics tumbler mixer (Inversina 2L)

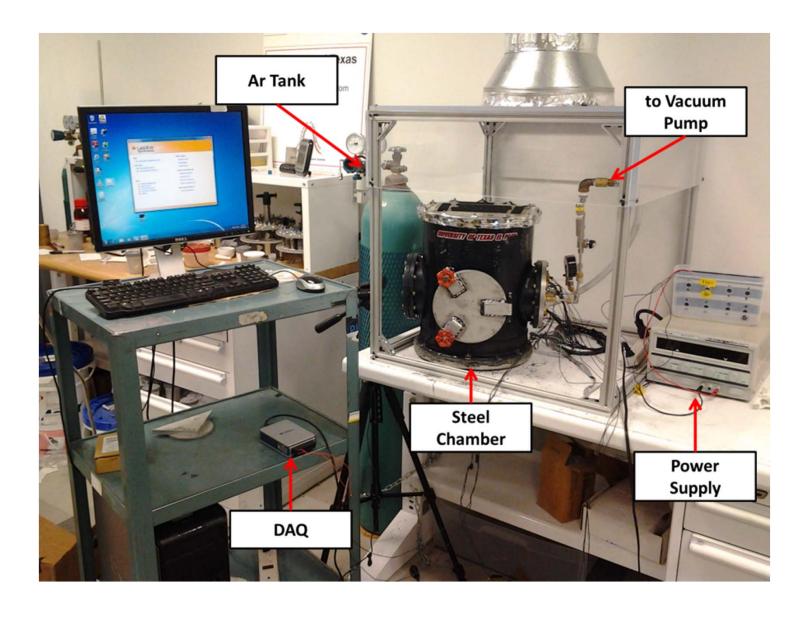
High-energy Ball Milling

Planetary ball mill (Fritsch Pulverisette 7 Premium Line)


- ☐ Zirconia-coated bowls and zirconia grinding balls
- ☐ Argon environment
- ☐ Mixture-ball mass ratio: 1:6
- **□** 1100 rpm
- ☐ 4 milling-cooling cycles
 - 10-min milling
 - 75-min cooling

Preparation of Pellets

- ☐ Compaction in an uniaxial hydraulic press
- ☐ Diameter: 12.7 mm, 25.4 mm
- ☐ Pressing force: 30 40 kN



Experimental Setup

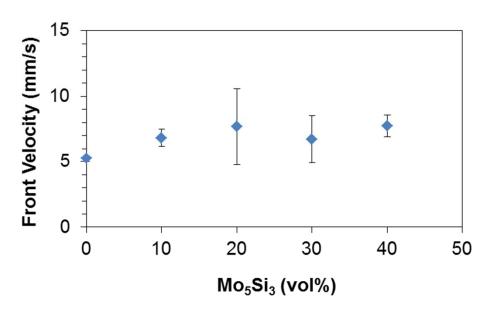
Effect of Mechanical Activation

20 vol% Mo₅Si₃

No mechanical activation

After mechanical activation

Mechanical activation significantly accelerates combustion.



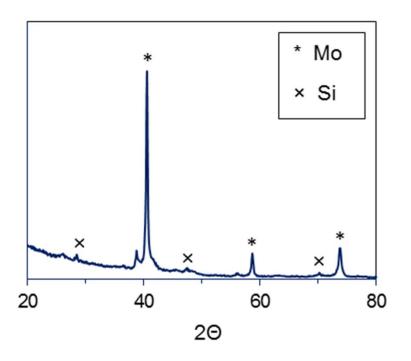
Combustion Characteristics

Maximum Temperature

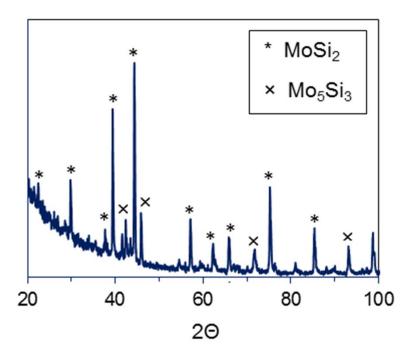
1600 1400 1200 0 10 20 30 40 50 Mo₅Si₃ (vol%)

Combustion Front Velocity

- No significant effect up to 50 vol% Mo₅Si₃
- 50 vol% Mo₅Si₃: no ignition



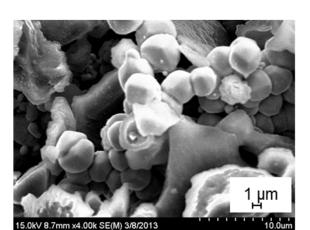
X-ray Diffraction Analysis

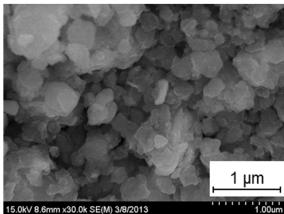

20 vol% Mo₅Si₃

As-milled powder

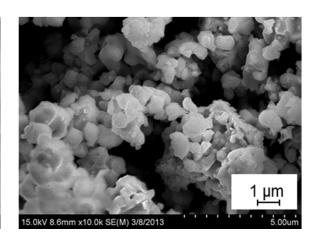
- Initial components
- No MoSi₂ or Mo₅Si₃

Combustion products


- No initial components
- MoSi₂ and Mo₅Si₃

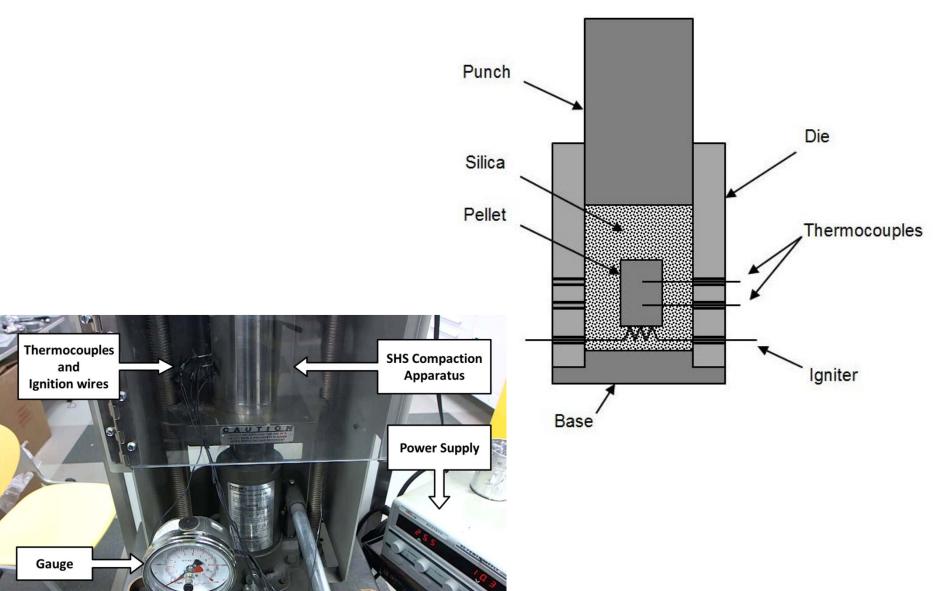

Scanning Electron Microscopy

20 vol% Mo₅Si₃


Before milling

After milling

After combustion



- Milling reduces particle size to submicron range.
- In the combustion products, most particles: 0.5 1 μm, agglomerated, 3-D network structure.

SHS Compaction Apparatus

Combustion Products

20 vol% Mo₅Si₃

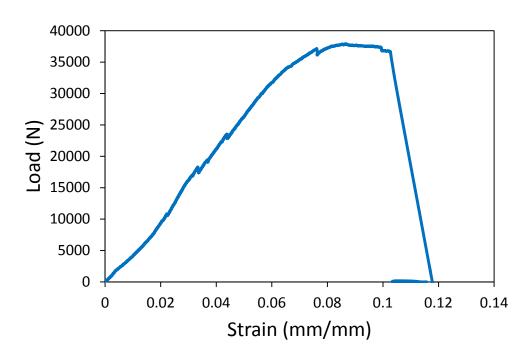
After combustion in Ar

Relative density: 39%

After SHS compaction

Relative density: 60%

SHS compaction increased the relative density by 52%.



Compression Test

20 vol% Mo₅Si₃

Compressive load-strain curve of the SHS compaction product

Fatigue test machine (Instron 8801)

Maximum compressive strength: 79 MPa

☐ Thermogravimetric analysis

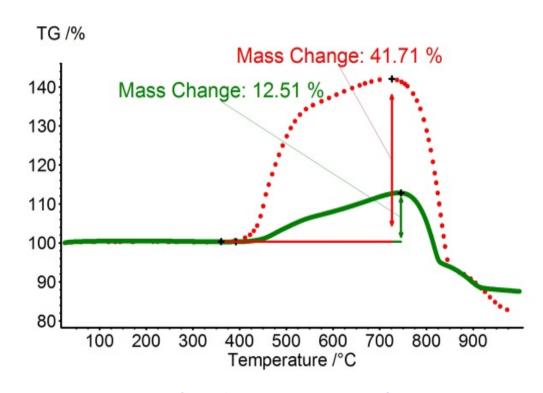
■ 80 vol% MoSi₂, 20 vol% Mo₅Si₃

■ Atmosphere: 20% O₂, 80% Ar

Heating rate: 10°C/min

Thermogravimetric analyzer (Netzsch TGA 209 F1 Iris)

Oxidation Properties



□ Products obtained by combustion in Ar:

Mass gain: 42%

□ Products obtained by SHS compaction:

■ Mass gain: **13**%

TG curves for the oxidation of MoSi₂-Mo₅Si₃ materials obtained by combustion in Ar (dotted lines) and by SHS compaction (solid lines).

Synthesis of Mo_5SiB_2 - Based Composites

Overview and Preparation

- ☐ Mo₅SiB₂ may improve the oxidation resistance
 - Mo₅SiB₂ forms a borosilicate glass layer
- □ The addition of Mo and B ensures higher exothermicity through the reaction Mo + B → MoB
- Mixtures were prepared that correspond to the desired product composition:
 - 10 67 vol% MoB
 - The balance Mo₅SiB₂

SHS of Mo-Si-B Mixture

61.8% Mo

11.8% Si

26.4% B

61.1% Mo

11.1% Si

27.8% B

59% Mo

9% Si

32% B

A single hot spot, then two counterpropagating hot spots

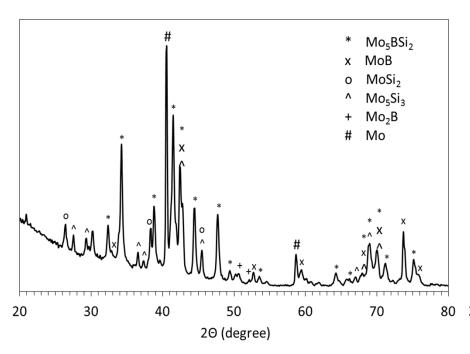
Three hot spots (Three-head spin)

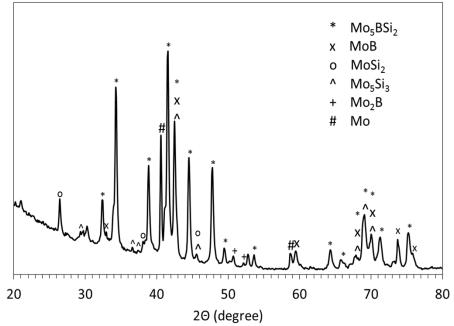
Multiple hot spots

Combustion Characteristics

No.	Initial mixture			Expected product							
	Мо	Si	В	Mo ₅ SiB ₂	МоВ	u	Z	f	n	V	u·z
	mol%	mol%	mol%	mol%	mol%	mm/s	mm	Hz		mm/s	mm²/s
1	62.5	12.5	25	100	0	-	-	-	-	-	-
2	62.16	12.16	25.68	90	10	*	*	*	*	*	-
3	61.76	11.76	26.47	80	20	2.5	0.94	2.6	1	121	2.4
4	61.13	11.13	27.74	67	33	2.9	0.85	3.4	3	47	2.5
5	60	10	30	50	50	3.6	0.73	4.9	>3*	*	2.6
6	59.09	9.09	31.82	40	60	4.1	0.64	6.3	>3*	*	2.6
7	58.29	8.29	33.42	33	67	5.6	0.56	10.0	>3*	*	3.1

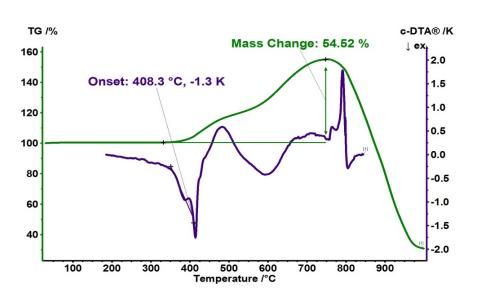
^{*}Accurate measurements were impossible in this case.

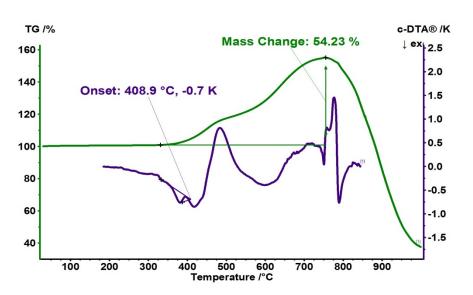

☐ The results confirm Novozhilov's theory of spin combustion.


- The tangential velocities **v** correlate with the values obtained from the mass conservation equation.
- The obtained $u \cdot z$ are of the same order of magnitude as the thermal diffusivity.

Mo-Si-B Combustion Products

61.1% Mo	58.3% Mo
11.1% Si	8.3% Si
27.8% B	33.4% B


 Comparison of Mo-to-Mo₅SiB₂ intensity ratios shows: adding more B decreases the content of Mo phase (detrimental for mechanical properties)



61.8% Mo 11.8% Si 26.4% B 58.3% Mo 33.4% B

- Oxidation resistance of Mo-Si-B materials is independent on the concentration of Mo phase in the products.
- Thus, we can use materials with a higher Mo content, which are preferable because of better mechanical properties.

Conclusions

- MoSi₂-Mo₅Si₃ composites have been obtained by MASHS.
- ☐ SHS compaction of MoSi₂–Mo₅Si₃ composites
 - Increases the product density by over 50%.
 - Increases the compressive strength and oxidation resistance of the products.
- ☐ Combustion synthesis of Mo₅SiB₂-based materials
 - Leads to spin combustion, the characteristics of which are in good agreement with the spin combustion theory.
 - Oxidation resistance of the obtained Mo-Si-B materials is independent on the concentration of Mo phase in the products.

Future Work

- ☐ To obtain pure T₂ phase by combustion synthesis using the "chemical oven" technique
 - Combustion in Ar environment
 - SHS compaction
- ☐ To investigate oxidation properties of the obtained molybdenum borosilicides at temperatures up to 1550 °C
 - Differential scanning calorimeter Netzsch DSC 404 F1
 Pegasus
- ☐ To investigate other mechanical properties of the obtained molybdenum borosilicides

Publications and Presentations

International

- Alam, M.S., and Shafirovich, E., 35th International Symposium on Combustion, Aug 3-8, 2014, San Francisco, CA, accepted; *Proceedings of the Combustion Institute*, Vol. 35, in press.
- Alam, M.S., and Shafirovich, E., 12th International Symposium on Self-Propagating High Temperature Synthesis, 21 24 October 2013, South Padre Island, TX, p. 92.

National

Alam, M.S., and Shafirovich, E., 8th U.S. National Combustion Meeting,
 May 19-22, 2013, Park City, UT, Paper 070HE-0301.

Regional

- Alam, M.S., and Shafirovich, E., Spring Technical Meeting of the Central States Section of the Combustion Institute, March 16-18, 2014, Tulsa, OK. 1st place for Technical Merit in the Combustion Art Competition.
- Alam, M.S., and Shafirovich, E., 4th Southwest Energy Science and Engineering Symposium, El Paso, TX, March 22, 2014.
- Alam, M.S., and Shafirovich, E., 3rd Southwest Energy Science and Engineering Symposium, El Paso, TX, April 27, 2013.

Thank you!