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Increasing Efficiency

US-DOE Advanced Power Systems:
46%-48% efficiency from coal generation
Steam condition: 760 C - 35MPa

emissions over the lifetime of an ~ 5ksi

800-MW plant

Each 1% increase in efficiency
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100,000hr Creep-Rupture for USC Boiler Materials
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JMaterial requirements for Advanced Ultra-
SuperCritical (AUSC) boiler:

» Low cost metal
» Compatible thermal properties

» Sufficient high temperature performance
= Sufficient mechanical strength
= Creeping resistance
= Corrosion resistance

» Low temperature ductility
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Ferritic steel

» BCC matrix with low Ni content (low cost)
» Low temperature brittleness
» Weldability

. New design of ferritic steel

» Composition modulation
» Microstructure engineering



Lnpe Complexity of the Alloy Strategy

dMany structural factors:
» Matrix
» Precipitation
» Grain boundary
» Interphase

JCorrelated problem

» Doping may solve a problem but bring in more
problems

» Difficult to assess the effect of alloying
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] BCC structure

Ferritic Matrix

(d Composition of the BCC matrix in 9-12% Cr steels

Name
P91
E911
P92
AXM
HCM12
P122

Fe
0.9898
0.9969
0.9944
0.9964
0.9977
0.9986

Cr

5.87E-4
5.29E-4
5.55E-4
5.45E-4
5.36E-4
5.15E-4

Ni

6.10E-4
5.96E-4
1.03E-5
6.22E-4

Mo

8.42E-9

1.13E-8
2.30E-8
1.97E-7
1.19E-8
1.08E-11

Si
6.64E-3
2.03E-3
3.83E-3
1.31E-3
1.72E-3
2.99E-4

Al
2.77E-3
5.75E-12
6.14E-4
1.15E-3

4.18E-11
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] Screening ferritic steel design based on properties of
the solid solution matrix
» Elastic properties
» Low temperature ductility (Rice-Thompson parameter)

[ Develop efficient parallel software for large scale
screening calculations
» first principles quality for solid solution system
» Automated solid solution structure sampling
» Automated properties calculations
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[ Dilute multi-component solid solution
» requires huge lattice cell

» components of very low concentration considered as
point defect

[ Special quasi-random structures
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Classification of discrete structure models

» Atomistic point model
— Gas: position of atom all over the space
— Crystal: atom positions confined to the regular lattice sites
— Ordered solid solution: random occupation on regular lattice sites
— Disordered : atom positions confined to the irregular lattice sites

» Multipole grain model
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Statistical Mechanics / Classical N same particles gas in a box problem:
Canonical partition function (boundary condition)

Z(B) = ! dVe—ﬁH p.d) S
N3N H(pq——zpﬁrU()
Therefore
1 /2mpa2\ >
Z(B) = N! ( 7;522) ZPOS(B) poe = / / dgl dque fU(a)

Mayer cluster expansion to calculation conflguratlonal integral

Assuming only pair-wise interaction
N—-1 N

e BU(a) — II II e~ PUi;(ris)

i=1 j=i+1

Introducing Mayer function M, i = PVii(rii) _ 1 (small)

N-1 N

e PU@ = T J] 1+ M) =1+ Z M,
i=1 j=i+1 1=1,1<]j
N
- Yoo MM+

i=1,i<j,k=1k<l



A\ TENNESSEE

STATE UNIVERSITY I rrEd U Ci b I el nteg ra IS

[avmm,..

Graphical representation of Mayer cluster expansion terms
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Singly jointed graph can be reduced into product of irreducible integrals
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] Free energy calculations

» Supercell Approaches
F(3,T)~ ) w/(T)F(T)

ieoc

» Ensemble Average of Supercells:

supercells are local snapshots in the infinite solid solution lattice o

» Cluster Expansion Methods
» Weighted average of clusters: F(o,T)= Z K (T)D’,

a,s are cluster indices and cluster order indices
clusters are local structures in the infinite solid solution lattice O

» Mathematically rigorous
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 Properties calculations

» Supercell Approaches
F(3,T)~ ) w/(T)F(T)

ieoc

» Ensemble Average of Supercells:

supercells are local snapshots in the infinite solid solution lattice o

» Cluster Expansion Methods
» Weighted average of clusters: F(o,T)= Z K (T)D’,

a,s are cluster indices and cluster order indices
clusters are local structures in the infinite solid solution lattice O

» Mathematically rigorous
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Cluster Expansion Method for multi-component multi-sublattice systems:
PD. Tepesch, et al PRL 74, 12 (1995)

F(¢,T)z) K (T)D:, !

:Hq)asﬂ:;azuﬂi 4 *_T* see

I I

B,

|

Challenge: number of cluster expansion terms n
n ~ (N_ ])|OC|Nsublattice

UnitCell Expansion Method for multi-component multi-sublattice systems:

F(¢,T)=) K (T)D:, o, —

Rationale: Coarse grained cluster (CGC) expansion,
sUnitcells are treated as pseudo atom types
«Simplify lattice
*Expected must faster cluster interaction decaying over distance ( up to pair )
*Much larger number of components (pseudo atoms) (unitcell types)
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2X2x2

3x3x3
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Reducing CGC set size:

d CGC with the same composition can be grouped

» Symmetrically equivalent CGC to be assigned the same CGC id
» Cluster = < C,

l’

Neis Ocins Vi =

C. : concentration vector at size cluster site i,
ci - order id of CGC with the same C,
O¢i, - orientation of CGC with order n¢; and C; at site i

r;: relative position of site i in the cluster

» With proper choice of basis, it is expected that only a much reduced set of
ne; and oc;, will have significant ECI
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O Orthogonal discrete Chebyshev basis for Multi-components system
> o=lo,, 0,..., gy} N (number of lattice sites), o, (site occupation)
o, ={-1,-(m-1)/m, ..., 1} M (number of components) M=2m or 2m+1
» Discrete chebyshev polynomial O, :

®n (0) — ch,kak’ <®n (G)’G)m (G)>alla - 5’7’"
> Clusterfunclt{ion b: O = H®n‘ (o )
s={ny,..}
a={py,..}

» Orthogonal cluster functions:

(@, @) =W5

allé st
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First principles calculations of all possible
unitcells to locate group of unitcells with
lower energies

*To reduce the number of
unitcell types to be included
in further calculations.

First Principle calculations on small *To generate datasets for

supercells built from selected unitcells evaluating effective cluster
interaction parameters (ECI)

*To obtain ECI from the
supercell calculations.

Solve the over determined equations to find
out the effective cluster interactions (ECI)

Do Monte Carlo simulations to calculate *To estimated configurational
free energy of much large systems based free energy.
on ECI

The large supercell’s energy is calculated by ECI
instead of first principle calculation
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Clusters:
(1) self
(2) face-share
(3) edge-share
(4) corner-share

Unitcell Selection:

(1) for periodic structures consisted of one type of unitcell
compute the total energy and pressure

(2) group analysis of the total energies and pressures of the unitcells with the
same concentration

(3) select the lowest group in the total energies-pressure plot to be included in
the set of unitcells ( prefers unitcells with minimal intercell interactions )

(4) it is possible to add more unitcells to the set using the criteria of
cross-validation
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Pressure (GPa)

Unitcell Selection

Concentration dependent energies of lattice with I unitcell type

Unitcell composition: B, ,C,
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Carbon distribution in Boron carbide B, ,C,. Red line indicates carbon percentage at two
edge sites of the 3-atom chain. Blue line shows the carbon percentage in the
icosahedrons. Black line depicts carbon percentage at the center of the 3-atom chain.
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(J Poor man’s approximation to cluster expansion method
— ~ S S
F(c,T)=z) K. (T)D:,
a.,s

<F>SQS = ; K; (T)<(DZ‘>SQS !
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d At high temperature limit
» site occupation is complete random
»correlation function is known

PO yr) = H<7/a M, (o, )>

le

» match SQS correlation with the known correlation function
v'Exhaustive search
v'Genetic algorithm
v'Other global optimization approach may also be used
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Project tasks Year 1 Year 2
A.1 G(P,T) module for automated structure modeler

A.2 G(P,T) module for implement the SQS method

B.1 Application to known 9-12Cr ferritic steels -

B.2 Screening Studies of BCC solid solution




sa Tasks

Methodology Development

JA.1 G(P,T) module for automated structure modeler
The module will have the capability of:

» generate solid solution model based on supercell specified
in lattice vectors, i.e. the miller indices, and composition
specified in partial occupations;

» batch process without human intervene;

» generate the special quasirandom supercell structures set
for the SQS method.
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Methodology Development

JA.2 G(P,T) module implementing the special
qguasirandom structures method

The module is responsible to invoke structure
modeler implemented in A.1 to produce the set
the special structures and setup VASP calculations
to obtain properties of the set.
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B. Application to 9-12Cr Ferritic Steels

 B.1 Properties of known 9-12Cr ferritic steel

» Positive control using well characterized 9-12Cr ferritic steels

» P91, E911, P92, AXM, HCM12, P122, T122, NF12, FN5, TB12, VM12
and X20

» Formation energy and Elastic constants will be assessed initially.
» Assess ductility using the ratio of bulk modulus and shear modulus.

» Stacking fault energy and surface cleavage energy will be carried out
to estimate the Rice-Thomson parameter which is widely used as
ductility criterion.

» Trend analysis of the Rice-Thomson parameter.
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B. Application to 9-12Cr Ferritic Steels

J B.2 Screening studies of BCC solid solution

» Large screening in a progressive manner with 4 components BCC solid
solutions examined first.

» The surfaces of the properties in the composite space are examined to
refine the likely zone of sampling for additional components based our
results of known ferritic steels.

» Global optimization methods such as simulated annealing and genetic
algorithm to locate the optimal ferritic design.
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d Pl: 1 summer month (S5851 + benefit)
1 Postdoc: 12 months (S42000 + benefit)
 Travel: $5000 for two trips

[ Supplies: $1865

d Computer: $1000
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1 Coarse grained cluster expansion of dilute BCC iron

 Preliminary results on solid solution z-phase in steel



e CGCE: BCC Iron
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(] Choice of Coarse Grained Cell

v 2x2x2 supercell is used. (dilute BCC iron)
v’ 8 atoms per CGC
v' 4 types of unit cell: Feg, CrFe,, AlFe,, SiFe,




‘ ggﬁ&ﬁ%ﬁ Z-phase in steel

Two Campuses. O

»Based centered tetragonal lattice

» Primitive cell contains two disordered
sublattice sites that are occupied by Nb
orV

i
AV

» 4 type of cells used in the UEM
calculation.

» Clusters limited no more than pairs.
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»Ranganathan Parthasarathy (BioEngineering, KU)
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» Ayodeji Borode



TENNESSEE

S TATE UN]VFRSITY

Thank you!



