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Background

• Core-shell structure exhibits high surface area and 
catalytic-like properties

• Conventional coating techniques for core-shell 
particles require both high capital and operating 
cost

• Some coating techniques involve toxic solvent. 
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Proposed Synthetic Methods

• Metal Organic Chemical Vapor Deposition
• Utilize a low cost hot walled reactor as an alternate route 

for the preparation of core-shell structures.

• Ionic Diffusion via Redox Cycles 
• Utilize the movement of atoms during redox, forming a 

core-shell like structure
• OSU has rich experience with particle development for 

chemical looping system
• In depth testing of different metal oxides particles under 

redox environment
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Potential Significance

• Reduce the cost of synthesis

• Improve the performance of catalytic fossil fuel 
conversion, chemical looping 
combustion/gasification and sorbent-based fossil 
fuel applications

• Environmental friendly since no solvent is 
required for ionic diffusion
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Chemical Looping
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Statement of Project Objectives
• Synthesize stronger and more chemically reactive particles 

for use in fossil energy applications

• Synthesize and characterize Fe2O3-shell/Al2O3-core micro-
particles prepared via the cyclic ionic diffusion and 
MOCVD methods.

• Gain control of shell thickness

• Comparison of morphology, mechanical strength, and 
reactivity of synthesized core-shell structured particles 
synthesized via vapor deposition and ionic diffusion

• Demonstrate the applicability of proposed method by 
preparing and test a CaO-core/Fe2O3-shell particle
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MOCVD
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Tunable β‐ketoiminate ligand backbone TGA Analysis of a MOCVD Precursor



• Films with uniform thickness under mild 
conditions (<700°C)

• High quality thin films with less impurities

• High growth rate

• Highly crystalline films
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Volatile and thermally stable

Produce uniform and reproducible coatings

Decompose to afford high purity material

No premature decomposition of the 

precursor prior to reaching the substrate

MOCVD
Precursor Requirements
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More attractive than their β-diketonate
analogs:

 Volatile and thermally stable

 Ability to tune the volatility and thermal 
stability by varying the R groups

β‐Ketoimines
R1 R2

O HNR3
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‐Ketoimine Synthesis
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1. KOH/EtOH

2. FeCl3/H2O

3
H

Synthesis of Fe(III) Complex
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MOCVD Coating of Particles
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Future Work

• Continued preparation of volatile and 
thermally stable precursors.

• Growth and characterization of core shell 
particles via MOCVD.

• Defining the relationship between CVD 
reaction time and shell thickness.
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Technical Approach: Synthesis

• Ionic Diffusion via Cyclic Redox Cycles
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Technical Approach - OSU
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• Synthesis of ݁ܨଶܱଷ	݄݈݈ܵ݁ ⁄	݁ݎ݋ܥ	ଶܱଷ݈ܣ via cyclic redox 
reaction
– Confirmation from SEM and EDX analysis

• Application of 2-D diffusion model and diffusion 
mechanism study

• Control of shell thickness and synthesis optimization 
– Amount of iron loading
– Number of cycles required 

• Performance characterization for both synthesis method 
ଶܱଷ݁ܨ) ⁄ଶܱଷሻ݈ܣ
– Reactivity comparison via TGA
– Mechanical Strength measurement
– Surface Area comparison

• Synthesis of ݁ܨଶܱଷ	݄݈݈ܵ݁ ⁄	݁ݎ݋ܥ	ܱܽܥ particle
– Universal application of the redox cycle synthesis method

Completed

In 
Progress



Parametric Study
• Percent Iron Loading
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Homogeneous 20/80 Fe/Al Particle Homogeneous 40/60 Fe/Al Particle



Parametric Study
• Particle Size
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D = 0.35mm D = 2.00 mm



Characterization

• 40/60 Fe/Al
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EDAX Analysis

SEM Analysis

Both Fe and Al are detected



Cyclic Redox via TGA
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Condition: 100 cycles. Reduction under Hydrogen. Oxidation under Air.

Wave-like Reactivity



Cyclic Redox via TGA

• Wave-like Profile
– Increased Reactivity

• Migration of iron atoms toward the surface

– Decrease in Reactivity
• Sintering of surface iron oxide
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Characterization
• Post Cyclic Redox
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No Alumina is detected on 
the surface



Characterization
• Post Cyclic Redox
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EDAX Mapping reveal concentrated Alumina under fractured shell



Summary-OSU

• Successful formation of core-shell particle via 
cyclic redox

• Homogeneous particles of various parameters 
have been prepared

• Two competing phenomenon has been 
proposed. Further investigation is needed
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Future Work-OSU

• The competing phenomena during redox 
cycles will be examined by varying the 
number of cycles and end state.

• TGA profile for the larger particle will also be 
studied.

• Synthesis of varying degree iron loaded core-
shell particles will continue in order to study 
the effect of iron loading.
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