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Project Objectives

a. Evaluate the degradation of performance for trench and 
crater film cooling configurations when subjected to 
active deposition of contaminants.  This will be done on 
simulated vane and endwall models.

b. Design improved trench or crater film cooling 
configurations that mitigate the degradation effects of 
deposition of contaminants.  

c. Determine the overall cooling effectiveness (including 
conjugate heat transfer effects) with and without thermal 
barrier coatings for the vane and endwall.  
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Project Objectives, continued

d. Develop the knowledge needed to design film cooling 
configurations on contoured endwalls.

e. Perform detailed velocity and thermal field 
measurements along the vane, endwall, and 
downstream wake, with and without film cooling, to 
provide benchmarks to evaluate CFD simulations.

f. Develop improved cooling designs specifically for the 
vane-endwall junction including mitigation of deposition 
effects.



Experiments were conducted to investigate effects 
of TBC and contaminant depositions on film 
cooling performance for a vane.
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Test section:

• Performance was quantified in 
terms of overall effectiveness.

• Multiple hole geometries were 
investigated.

Flow 
direction

Turbulence grid / 
wax sprayer location

Test airfoil / 
deposition surface



What is the overall effectiveness?
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The “overall effectiveness”, ϕ, is obtained using a conducting model and is defined as 
follows:
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Tc = coolant temperature in the plenum

ϕ is a dimensionless surface temperature for a conducting model which takes into 
account conduction through the blade wall, film cooling, internal cooling, and 
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Adiabatic effectiveness is traditionally used to quantify film performance



To achieve a properly scaled ϕ, certain 
parameters must be matched
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A simplified 1-D analysis using Taw as the driving temperature shows: 
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he = external heat transfer 
hi = internal heat transfer coefficient 
t = wall thickness
k = conductivity of the solid

Matched Bi was achieved using DuPont Corian®, k = 1.0 W/m.K

Also important to match the he /hi ratio.  This is done even though the 
magnitudes of he and hi are much less than in the engine.



Of particular interest was quantification of the 
improved overall effectiveness due to use of TBC 
• Although TBC is used extensively on actual engine hardware, there has 

been little experimental study because of the reliance on adiabatic 
effectiveness measurements.

• Trench and crater configurations can potentially be formed using TBC
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Computational study of the effects of hole blockage due to TBC (Na et al., 2007)

Adiabatic Conducting with TBC
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Distributions of overall effectiveness with no 
film cooling, i.e. φ0, with and without TBC

TBC: t =2.3mm, t/d =0.55

Suction sidePressure side

φ increases with increasing 
internal coolant flow rates

Use of TBC results in as much as a factor of 3 increase in φ



Film cooling configurations on suction side of 
the vane
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 Trench
 Embedded round holes

 t/d = 0.55 (cork thickness)

 w/d = 2

Source: Bunker, 2002

 Rounds Holes
 24 holes

 s/C = 0.23

 d = 4.2 mm



Overall effectiveness on the suction side with TBC –
comparison of round and trench film cooling 
configurations.
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Evaluation of predictions of φ based on 
measured values of η and φ0
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side coolant holes
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Overall effectiveness on pressure side with 
showerhead and PS row of holes with no TBC 

Pressure side

Increasing φ with increasing 
blowing ratio in showerhead 
region

Decreasing φ with increasing 
blowing ratio downstream of 
pressure side holes

Row of holes



Overall effectiveness on pressure side with 
showerhead and PS row of holes with TBC 

TBC: t =5.1mm , 
t/d = 1.21

Pressure side

Increasing φ with increasing 
blowing ratio in showerhead 
region

No change in φ with increasing 
blowing ratio downstream of 
pressure side holes

Row of holes



Overall effectiveness on pressure side with showerhead 
and PS row of holes with and without TBC 

Pressure side
TBC: t =5.1mm , 
t/d = 1.21

TBC has a more substantial effect than film cooling on the 
overall cooling effectiveness

Row of holes



Overall effectiveness with varying film cooling 
configurations with TBC 

Pressure side

Modified trench configuration provides slightly higher overall 
cooling effectiveness.

Row of holes



• Turbine depositions:  Molten/softened ash particles impact and solidify on 
cooled airfoils and endwalls.

• This study simulates this in a wind tunnel using molten wax particles.

Contaminant depositions simulated using wax 
spray technique
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Schematic of the wax spray device:
Photo of wax spray device in 
turbulence grid:



Images of deposition with film cooling with round 
holes 

Pressure side Showerhead

Pressure side 
round holes 
blocked by 
depositions



Images of deposition with film cooling with the 
crater configuration in TBC

Pressure side Craters are not blocked by 
depositions, but large buildup of 
depositions upstream and 
downstream of coolant holes.



Images of deposition with film cooling with the 
modified trench configuration in TBC

Again, holes are not blocked by 
depositions, but large buildup of 
depositions upstream and 
downstream of coolant holes.

Appears that coolant interaction with 
molten particles has stimulated 
growth of depositions



Effect of depositions on overall cooling 
effectiveness for a film cooled vane with TBC

Pressure side

Row of holes

Depositions cause an increase in overall cooling effectiveness!

Little effect on the suction 
side because deposition 
thickness is small



A range of interface slot geometries were evaluated 
in the large scale, closed loop wind tunnel at PSU
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Net heat flux reduction characterized the durability 
of the vane endwall for leakage MFR and I
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The stagnation plane flow field was measured using 
a high-image-density TRDPIV system

High speed camera
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The pressure side of the passage remains uncooled 
for all injection angles at low MFR

η90 45

MFR = 0.5%, I = 0.7 
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As injection angle was decreased, endwall 
effectiveness improved for higher MFR

η90 45

MFR = 1.0%, I = 2.8 

3065
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Nusselt number contours are less affected by slot 
orientation at the case with lower MFR
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Nusselt number contours for orientation angles less 
than 45° had a more pitchwise uniform distribution
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NHFR contours were mostly influenced by adiabatic 
effectiveness
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High momentum flux ratio results indicated most of 
the passage had a positive benefit from the slot

90 45 3065
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The highest area averaged net heat flux reduction 
was measured for I = 2.8, MFR = 1.0%, with a 45° slot

90 65 45 30
Slot Orientation (°)

Area
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Cooling of the vane endwalls is complicated by 
secondary flows originating in the boundary layer
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Counter vortex

EndwallInlet boundary 
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Vane

[Langston, 1980]
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Far from the vane an elongated HSV was measured, 
close to the vane the HSV was smaller
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MFR = 1.0%, I = 2.8
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An oil flow visualization technique was used to draw 
streaklines of the flow along the endwall

Incoming 
Flow 
Direction Exit

Flow Direction

Top View
Pack-B Blade Cascade

No. of airfoils 7

Scale 8.6x

Axial chord (Cax) 0.218 m

Pitch/chord (P/Cax) 0.89

Aspect ratio (S/Cax) 2.5

Exit Reynolds number 200,000

Exit Mach number 0.04

Zweifel loading coefficient (Z) 1.15
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Conjugate heat transfer effects can be modeled by 
matching endwall Bi and ho/hi to engine parameters
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Conclusions

Measurements of the overall cooling effectiveness show 
the relative benefits of TBC and film cooling.

Cooling benefit of TBC dominated to the extent that there 
will little effect of the improved film cooling from crater 
and trench configurations.

Ironically the insulating effect of simulated depositions 
improved overall cooling effectiveness.

Reducing the angle below 45 for high momentum 
injection improved endwall cooling effectiveness.

Coolant injected at the lower momentum flux ratio was 
unable to cool the pressure side of the passage.
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Questions?
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