U.S. Department of Energy National Carbon Capture Center

at the Power Systems Development Facility

Post-Combustion Carbon Capture

National Carbon Capture Center

Post-combustion

- Build test infrastructure at Plant Gaston
- Partner with solvent and process developers for evaluation
- Move technology forward to demonstration phase

Pre-combustion

- Utilize and expand existing syngas infrastructure
- Provide test site for syngas CO₂ capture technology evaluation
- Use data in engineering of full-scale systems

Oxy-combustion

 Scoping / screening studies of new pressurized oxycombustion process.

Cooperative Agreement DE-NT0000749 signed in September 2008. 2

Offer a unique <u>flexible testing facility</u> where processes can be tested on coal derived gas at various scales Serve as a technology development facilitator by providing facilities for <u>technology scale-up</u> Solicit and incorporate activities and projects from a <u>wide variety of participants and partners</u>. Find "Best-in-class" Technology. Deliver innovation through a cross-cutting, collaborative project that provides an <u>accelerated</u>

pathway to cost-effective CO₂ capture technology for coal fueled power production

National Carbon Capture Center at the Power Systems Development Facility

PSTU Baseline Test

- Purpose
 - Hydraulic check
 - Packing clean-out
 - Ambient heat loss estimate
 - Validate analytical methods
 - Instrument calibration
 - Controller tuning
 - Design validation
 - HMB closure

Range of Parameters Tested

- Total 27 test cases
- 3 to 8 hour mass balance time periods for most cases

 CO₂ mass balance closure 	92 – 105%
 Rich CO₂ loading (Absorber outlet) 	0.37 – 0.55 mol/mol
 Lean CO₂ loading (Absorber inlet) 	0.12 – 0.34 mol/mol
 S/L ratio (steam/liquid) 	0.04 – 0.12 lb/lb
Steam flow rate	680 – 2,460 lb/hr
 L/G ratio (liquid/gas) 	2.8 – 5.5 lb/lb
Liquid flow rate	12,500 – 27,500 lb/hr
Flue gas flow rate	3,100 – 5,000 lb/hr
MEA concentration	18 – 39wt% (20%, 30%, 40% nominal)
 CO₂ removal rate 	62 - 97%

• Flue gas composition at Absorber inlet (vol%, wet):

 $H_2O = 6.3 - 7.3$ $O_2 = 4.6 - 7.1$ $CO_2 = 11.4 - 12.9$ $SO_2 < 1 \text{ ppmv}$ No CO_2 removed by caustic in Pre-Scrubber

Baseline Test - Reboiler Energy

Baseline Test – MEA Losses

- Preliminary results: analytical procedures still in development.
- Short duration of test did not warrant reclaimer operation
- MEA losses in the gas phase measured < 10 ppm
- One nitrosamine compound (nitrosomorpholine) detected at parts-per-trillion level.
- Other compounds detected at parts-per-billion level:
 - Formaldehyde, Acetaldehyde, Butylaldehyde, Ethylamine, and Dimethylamine.
- All compounds detected well below OSHA Permissible Exposure Limits.
- This type of sampling needs to be done with other solvents and other operating conditions to better understand causes and potential methods of emission control.

Baseline Test - Lessons Learned

Operations

- System cleanup solvent filtration
 - Three days to clean-up particulate from piping
- Water balance
 - Requires close monitoring, controls installed to automate water transfers
- Power plant interaction
 - Utility supplies, boiler operations
- SO₂ removal in pre-scrubber below 1 ppm with negligible CO₂ removal
- Regenerator condenser overhead controls a challenge
 - May modify condenser level control
- MEA losses from wash tower

Baseline Test - Lessons Learned

<u>Equipment</u>

- Gas flow transmitters
 - Impulse line modification
- Differential pressure measurement on packing bed
- Storage of equipment before run
 - Solenoid valves had to be overhauled
- Pump seal design
 - Threaded connections prone to leak
 - Filtration too close to system filtration
- Plate frame design
 - No low point drain
- Liquid distribution in absorber
 - Suspicious temperature profile
- Insulation and heat tracing capability
 - Stable temperatures ~110 F during shutdowns

Instrument improvements

Aker Mobile Test Unit

- Solvent-based
 mobile test unit in 2nd
 bay
- Previously tested at power plant in Scotland
 0.25 MWe capacity
 At PC4, first 24hour operation
 Testing underway

MTR Membrane Technology

- Membrane Technology & Research (MTR) CO₂ membrane skid
- 50 kW/1 tpd CO₂
 Capacity
- Previous testing at 3 sites
- Provides data for larger scale test unit

PC4 Test Plan													
2011Testing													
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
PSTU	Comm	issioning	Bas	seline	Test				B&W Solvent		-		
2 nd Bay							Aker	MTU					
Bench 1										MTR Membrane			
Bench 2	nch 2						Codexis*						
Bench 3												-	
Bench 4													
BOP					2 nd Air compressor and Electrical Upgrades						al		
*Negotiating Codexis Contract												tract	

Potential Technology Developers for 2012 and 2013 **Solvent Developers** Advanced **Process Enzymes Development Membranes** ER CODEXIS CEXAS CHIYODA CORPORATION HITACHI AIR LIQUIDE AKERMIN Aker CleanCarbon^{**} Inspire the Next R ION ENGINEERING

3H

