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Granular flow

Granular materials are large collections of
discrete solid particles whose size is large
enough that Brownian motion is irrelevant.
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» fluidized beds, pneumatic transport, risers, etc

« Fluid catalytic cracking (FCC) that crack heavy oil with the help of hot catalyst
particles, producing light hydrocarbons such as gasoline.

* Inthe US, fluid catalytic cracking is more common because the demand for

gasoline is higher.
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Multiscale Modeling for Particlulate Flows

Resolved Discrete Particle Unresolved Discrete Particle Two-Fluid
(Direct Numerical Simulation) (Discrete Element) (Continuum]
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Use DNS to derive the new drag correlation

« Carman-Kozeny equation
« Based on experiments, for slow flow
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« Dimensionless drag
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* Ergun equation, based on experiments
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Influence of sphere configurations

Three different random configurations of 50 spheres placed in a
cube (solid fraction 0.2873)

Applied the same pressure gradient




New drag correlation
 Final correlation for the drag model:

F=1+9.5¢0/1-¢)’ +9.50(1-¢)’ +(0.002+0.8¢'" +52¢")Re

— Based on over 150 simulation data.
— Applicable to solid fraction 0.05~0.63 and
— Easy to be implemented in MFIX



Bubble dynamics
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in a cycle
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Formation of a bubble in a fluidized bed from DEM simulation. Gas pressure is shown in color,
measured pressure changed from maximum value (a) to minimum value (d) in a cycle. (b), (¢) and
(d) are snapshots 0.04s, 0.14s, and 0.23s after snapshot (a).
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Gas pressure along with bed height, corresponding to the four snapshots at different time in Figure 2.



Elastic Regime

Granular flow regimes

Plastic Regime

Viscous Regime.

Stagnant Slow flow
Stress is strain ~ Strain rate
dependent independent
Elasticity Soil mechanics
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Rapid flow

Strain rate
dependent

Kinetic theory
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Granular flow can show different
behaviors (from fluid like behaviors
to solid like behaviors) in a fluidized
bed, kinetic theory deteriorates in the
dense regime

Kinetic theory

is used to

model the solid particles as a

continuum phase

method.
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Kinetic Theory of Granular Flow

Boltzmann equation: %+V-Vf =J[f, f]

Binary collision integral:  J[f, f]:dzjva@(g-n)(g-n)Ll2 £, (i, X3, Vo, X, = dn,t) = £, (v, X, vy, X, +dn,t) fdn

Multiplying a generic function of the velocity, ¢ (v) and integrate over v

G G B ]
)+ =) = [ 917,11

If we let ¢ = 1, v and v?, balance equations for mass, momentum, and
energy could be derived:

Do+ pV-u=0 aij:mJViij(v,x,t)dv
pDU+V.0=0 q:%“Vsz(v,x,t)dv

%thT+V-q+a:g+F:O F=—%IV23(f,f)dV



Discrete Element Method results as benchmark

SO0 — Particle-particle interactions
Soft-sphere collision scheme

OO0 To resolve the particle collisions,
OO0 DEM time step = T,,;; /50

Fi’} =K, 5N —ynmeﬁv{}

n-ij

t t t
i = _ktuij — VMt Vij

M =mimj/(mi+mj)

e :exp(—ynﬂ/\/m)

dt Snapshots of side discharge of glass beads from experiment (top
-1 row) and simulation with a rolling friction coefficient of 5x10-5 m
=7(2k, /m—y,/4)

t (bottom row) *

coll

Li, T., et al. (2012). "Open-source MFIX-DEM software for gas-solids flows: Part Il—Validation studies." Powder technology 220: 138-
150.




Kinetic theory cannot match DEM results in dense region

Assumptions:
« Velocity distribution only determined by collisions

Inelastic collision (kinetic energy dissipated during collision)
* Instant binary collision

However in dense regime, where sustained multi-particle contacts prevail, the kinetic theory will
overestimate the energy dissipation rate and the model may suffer inaccuracy.

{2 Granylar templerature for uniform ghear flow
— e=0.95
— e=0.9
— e=0.8
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S. Chialvo, andS. Sundaresan, "A modified kinetic theory for frictional granular flows in dense and diluteregimes," Physics of
Fluids (1994-present) 25, 070603 (2013).



Challenges/Obijectives

 Kinetic theory can handle large scale simulation but it may suffer
inaccuracy when system is dense

« DEM is computational expensive, cannot be applied to industrial level
simulation

Improve the continuum modelling of granular flow

In detall:

« To extend current kinetic theory to cover dense system where
sustained multi-particle contacts prevail

« To use DEM result to verify and improve Kinetic Theory modeling
In dense system

to facilitate the modeling of a wide range of flow system.



Modified Kinetic Theory for multi-body collision in dense region

Inelastic hard sphere model: event driven model with a varied time step,
unlike soft sphere Discrete Element Method (DEM)

Three drawbacks:
1. The number of collisions per unit time can diverge, i.e. “inelastic collapse”
2. All interactions are binary, multiparticle contacts cannot occur

3. No static limit (No way to represent enduring contacts between particles)

Proposed modifications to the IHS model: “contact duration” concept, so
that it can store some contact energy

t: time since last contact

{1 ift<t,

eift=>t,

Luding, S. and A. Goldshtein (2003). "Collisional cooling with multi-particle interactions." Granular matter
5(3): 159-163.




Modified Kinetic Theory for multi-body collision in dense region

Based on the modification to IHS, the energy dissipation rate was modified* :

p(t. +dt) = p(t)(1 —tz'det) p(t.) = exp(—7.)

T, =t /1

E T
K = p(t:.)* = exp —24EC¢90\/;

12
[[=—— 1—-e))K
,_ﬂd p¢zgo( )

12T
tg :?91590 p

*S. Luding, andS. McNamara, "How to handle the inelastic collapse of a dissipative hard-sphere
gas with the TC model," Granular Matter 1, 113 (1998)
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Modified Kinetic Theory applied on uniform shear flow

Granular temperature for uniform shear flow
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Modified Kinetic Theory applied on plane shear flow
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(a): t=0sec (left: 3507 particles; right: 7500 particles)
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(c): t=60sec (left: 3507 particles; right: 7500 particles)

(b): t=10sec (left: 3507 particles; right: 7500 particles)



Granular temperature and velocity profile
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Profile of granular temperature T along the y direction. DEM result (dots)
and theoretical solution from the KT model (dashed line), theoretical solution
from this model (line) at €=0.95 (left) and e=0.9 (right)



Solid volume fraction profile
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Profiles of velocity U and solid volume fraction ¢ along the y direction. DEM
result (dots) and theoretical solution from the KT model (dashed line),
theoretical solution from this model



Comparison between EKT and our modified KT
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