

Treatment of Produced Water from Carbon Sequestration Sites for Water Reuse, Mineral Recovery and Carbon Utilization

Performer: Southern Research

PI: Jay Renew, P.E.

2017 Crosscutting Research Portfolio Review March 23, 2017

DE-FE0024084

Period of Performance: October 1, 2014 to September 30, 2017

Southern Research Energy & Environment | 1

PROJECT GOALS AND OBJECTIVES

- Select candidate CO₂ sequestration reservoirs based on water chemistry and geologic properties
- Develop an integrated and adaptable concentration system
- Evaluate solidification & stabilization mixtures to immobilize residual contaminants
- Evaluate opportunities to recover valuable minerals, efficiently utilize CO₂, and recover water
- Complete a technical readiness review and economic feasibility analysis

TOPICS

- Team
- Formation Characteristics
- Integrated Concentration System
- Solidification/Stabilization
- Remaining Work

DISCLAIMER

The material in the following presentation is based upon work supported by the Department of Energy under Award Number DE-FE0024084

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

TEAM

Component (mg/L)	Keg Mountain	Mount Simon	San Andres
TDS	18,419	88,900	190,459
Ca ²⁺	940	8,514	5,578
Na⁺	5,019	22,545	63,014
Mg ²⁺	123	1,428	3,482
K ⁺	587	758	519
Cl	9,212	53,700	116,600
SO ₄ ²⁻	499	1,219	1,166
HCO ₃ ⁻	1,501	100	100

Component (mg/L)	Keg Mountain	Mount Simon	San Andres
TDS	18,419	88,900	190,459
Ca ²⁺	940	8,514	5 <i>,</i> 578
Na ⁺	5,019	22,545	63,014
Mg ²⁺	123	1,428	3,482
K ⁺	587	758	519
Cl ⁻	9,212	53,700	116,600
SO ₄ ²⁻	499	1,219	1,166
HCO ₃ ⁻	1,501	100	100

Component (mg/L)	Keg Mountain	Mount Simon	San Andres
TDS	18,419	88,900	190,459
Ca ²⁺	940	8,514	5,578
Na⁺	5,019	22,545	63,014
Mg ²⁺	123	1,428	3,482
K ⁺	587	758	519
Cl ⁻	9,212	53,700	116,600
SO ₄ ²⁻	499	1,219	1,166
HCO ₃ ⁻	1,501	100	100

Component (mg/L)	Keg Mountain	Mount Simon	San Andres
TDS	18,419	88,900	190,459
Ca ²⁺	940	8,514	5,578
Na ⁺	5,019	22,545	63,014
Mg ²⁺	123	1,428	3,482
K⁺	587	758	519
Cl⁻	9,212	53,700	116,600
SO ₄ ²⁻	499	1,219	1,166
HCO ₃ ⁻	1,501	100	100

Component (mg/L)	Keg Mountain	Mount Simon	San Andres
TDS	18,419	88,900	190,459
Ca ²⁺	940	8,514	5,578
Na⁺	5,019	22,545	63,014
Mg ²⁺	123	1,428	3,482
K ⁺	587	758	519
Cl ⁻	9,212	53,700	116,600
SO ₄ ²⁻	499	1,219	1,166
HCO ₃ ⁻	1,501	100	100

Process Overview

11

Process Overview – VSEP Pre-Concentration

VSEP SYSTEMS

- Create high shear rate at membrane surface to prevent fouling (Luo, Ding, Wan, & Jaffrin, 2012; Luo et al., 2013).
- Fouling prevention very important for treatment of high TDS waters.
- High shear rate can be achieved through vibrating the membrane (Luo, Zhu et al. 2013).

Figure Courtesy of New Logic, Inc.

13

HEARTLAND CONCENTRATOR PROCESS

Scenario Evaluations

- Natural Gas Combined Cycle (NGCC) Scenario
 - 500 MW (317 MW output from natural gas turbine / 183 MW supplemental HRSG turbine)
 - > 90% CO₂ capture
 - > Waste heat from downstream of gas turbine / upstream of HRSG utilized
 - Gas temperature = 1,149 °F
 - Concentrate produced water to 65% total solids
 - Assume 80% annual system capacity factor
- Coal Scenario
 - > 500 MW Illinois basin coal-fired power plant
 - > 90% CO₂ capture
 - > Waste heat flue gas upstream of air pre-heater utilized
 - Gas temperature = 650 °F with plant heat rate of 10,000 BTU/kWh
 - Concentrate produced water to 65% total solids
 - Assume 80% annual system capacity factor

NGCC Hot Gas Take-Off Point

16

Parameter	NGCC	Coal	Unit
Gross Electrical Output	500 (317)	500	MW
Plant Capacity Factor	80%	80%	
Plant Heat Rate (HHV)	6,715	9,800	BTU/kWh
Gas Energy Content	1,029		BTU/SCF
Coal Energy Content		11,666	BTU/lb (wet)
Plant Fuel Input	54,401	210	SCFM (gas) / Ton/Hr (Coal)
riant i del input	3,358	4,900	MMBTU/hr
	6,611	16,386	lb/min
Plant CO ₂ Emissions	1,389,973	3,444,961	Ton/Yr
	793	1,966	lb/mWh
CO₂ Capture Rate	90%	90%	%
Concentrator Hot Gas Temp	1,149	650	°F
	4,331,549	1,555,803	GPD
Maximum Evap Rate	3,008	1,080	GPM

<u>Notes</u>

1 - Max evap rate based on 100% of 'hot' flue gas going to Heartland concentrator.

Parameter	NGCC	Coal	Unit
Gross Electrical Output	500 (317)	500	MW
Plant Capacity Factor	80%	80%	
Plant Heat Rate (HHV)	6,715	9,800	BTU/kWh
Gas Energy Content	1,029		BTU/SCF
Coal Energy Content		11,666	BTU/lb (wet)
Plant Fuel Input	54,401	210	SCFM (gas) / Ton/Hr (Coal)
	3,358	4,900	MMBTU/hr
	6,611	16,386	lb/min
Plant CO ₂ Emissions	1,389,973	3,444,961	Ton/Yr
	793	1,966	lb/mWh
CO₂ Capture Rate	90%	90%	%
Concentrator Hot Gas Temp	1,149	650	°F
	4,331,549	1,555,803	GPD
Maximum Evap Rate	3,008	1,080	GPM

<u>Notes</u>

1 - Max evap rate based on 100% of 'hot' flue gas going to Heartland concentrator.

Parameter	NGCC	Coal	Unit
Gross Electrical Output	500 (317)	500	MW
Plant Capacity Factor	80%	80%	
Plant Heat Rate (HHV)	6,715	9,800	BTU/kWh
Gas Energy Content	1,029		BTU/SCF
Coal Energy Content		11,666	BTU/lb (wet)
Plant Fuel Input	54,401	210	SCFM (gas) / Ton/Hr (Coal)
	3,358	4,900	MMBTU/hr
	6,611	16,386	lb/min
Plant CO ₂ Emissions	1,389,973	3,444,961	Ton/Yr
	793	1,966	lb/mWh
CO₂ Capture Rate	90%	90%	%
Concentrator Hot Gas Temp	1,149	650	۴
	4,331,549	1,555,803	GPD
Maximum Evap Rate	3,008	1,080	GPM

<u>Notes</u>

1 - Max evap rate based on 100% of 'hot' flue gas going to Heartland concentrator.

Parameter	NGCC	Coal	Unit
Gross Electrical Output	500 (317 NG)	500	MW
Plant Capacity Factor	80%	80%	
Plant Heat Rate (HHV)	6,715	9,800	BTU/kWh
Gas Energy Content	1,029		BTU/SCF
Coal Energy Content		11,666	BTU/lb (wet)
Plant Fuel Input	54,401	210	SCFM (gas) / Ton/Hr (Coal)
	3,358	4,900	MMBTU/hr
	6,611	16,386	lb/min
Plant CO ₂ Emissions	1,389,973	3,444,961	Ton/Yr
	793	1,966	lb/mWh
CO₂ Capture Rate	90%	90%	%
Concentrator Hot Gas Temp	1,149	650	٥F
Marrison France Data	4,331,549	1,555,803	GPD
Maximum Evap Rate	3,008	1,080	GPM

<u>Notes</u>

1 - Max evap rate based on 100% of 'hot' flue gas going to Heartland concentrator.

Parameter	Mount Simon	Keg Mountain	San Andres	Unit
Water Production	320	403	320	Gallons per Ton CO ₂ Injected
Raw Water TDS	88,900	18,419	190,459	mg/L
Raw Water to Concentrator TDS	88,900	73,676	190,459	mg/L
VSEP Volume Reduction	N/A	75%	N/A	
Raw Water SG	1.04	1.05	1.09	SG
Concentrated Slurry %TS	65%	65%	65%	тѕ
Concentrated Slurry % Fly Ash (Coal Scenarios)	24%	22%	13%	wt% Fly Ash
Concentrated Slurry SG	1.4	1.4	1.4	SG
Feed : Evap Ratio - Turbine Exhaust	1.1	1.12	1.26	Gal Infeed / Gal Evap
Feed : Evap Ratio - Flue Gas	1.14	1.15	1.3	Gal Infeed / Gal Evap
Slurry : Evap Ratio - Turbine Exhaust	0.11	0.12	0.26	Gal Slurry / Gal Evap
Slurry : Evap Ratio - Flue Gas	0.18	0.19	0.34	Gal Slurry / Gal Evap

<u>Notes</u>

1 - For Keg Mountain scenario, it is assumed the water will first be pre-concentrated through a VSEP membrane with 4 cycles of concentration

2 - For flue gas scenarios, this analysis does not account for the SO_2 mass balance; i.e., the side effect of capturing of SO_2 from the flue gas into the Heartland Concentrator and impact on system pH and solids balance.

Parameter	Mount Simon	Keg Mountain	San Andres	Unit
Water Production	320	403	320	Gallons per Ton CO ₂ Injected
Raw Water TDS	88,900	18,419	190,459	mg/L
Raw Water to Concentrator TDS	88,900	73,676	190,459	mg/L
VSEP Volume Reduction	N/A	75%	N/A	
Raw Water SG	1.04	1.05	1.09	SG
Concentrated Slurry %TS	65%	65%	65%	TS
Concentrated Slurry % Fly Ash (Coal Scenarios)	24%	22%	13%	wt% Fly Ash
Concentrated Slurry SG	1.4	1.4	1.4	SG
Feed : Evap Ratio - Turbine Exhaust	1.1	1.12	1.26	Gal Infeed / Gal Evap
Feed : Evap Ratio - Flue Gas	1.14	1.15	1.3	Gal Infeed / Gal Evap
Slurry : Evap Ratio - Turbine Exhaust	0.11	0.12	0.26	Gal Slurry / Gal Evap
Slurry : Evap Ratio - Flue Gas	0.18	0.19	0.34	Gal Slurry / Gal Evap

<u>Notes</u>

1 - For Keg Mountain scenario, it is assumed the water will first be pre-concentrated through a VSEP membrane with 4 cycles of concentration

2 - For flue gas scenarios, this analysis does not account for the SO_2 mass balance; i.e., the side effect of capturing of SO_2 from the flue gas into the Heartland Concentrator and impact on system pH and solids balance.

Parameter	Mount Simon	Keg Mountain	San Andres	Unit
Water Production	320	403	320	Gallons per Ton CO ₂ Injected
Raw Water TDS	88,900	18,419	190,459	mg/L
Raw Water to Concentrator TDS	88,900	73,676	190,459	mg/L
VSEP Volume Reduction	N/A	75%	N/A	
Raw Water SG	1.04	1.05	1.09	SG
Concentrated Slurry %TS	65%	65%	65%	тѕ
Concentrated Slurry % Fly Ash (Coal Scenarios)	24%	22%	13%	wt% Fly Ash
Concentrated Slurry SG	1.4	1.4	1.4	SG
Feed : Evap Ratio - Turbine Exhaust	1.1	1.12	1.26	Gal Infeed / Gal Evap
Feed : Evap Ratio - Flue Gas	1.14	1.15	1.3	Gal Infeed / Gal Evap
Slurry : Evap Ratio - Turbine Exhaust	0.11	0.12	0.26	Gal Slurry / Gal Evap
Slurry : Evap Ratio - Flue Gas	0.18	0.19	0.34	Gal Slurry / Gal Evap

<u>Notes</u>

1 - For Keg Mountain scenario, it is assumed the water will first be pre-concentrated through a VSEP membrane with 4 cycles of concentration

2 - For flue gas scenarios, this analysis does not account for the SO_2 mass balance; i.e., the side effect of capturing of SO_2 from the flue gas into the Heartland Concentrator and impact on system pH and solids balance.

Parameter	Mount Simon	Keg Mountain	San Andres	Unit
Water Production	320	403	320	Gallons per Ton CO ₂ Injected
Raw Water TDS	88,900	18,419	190,459	mg/L
Raw Water to Concentrator TDS	88,900	73,676	190,459	mg/L
VSEP Volume Reduction	N/A	75%	N/A	
Raw Water SG	1.04	1.05	1.09	SG
Concentrated Slurry %TS	65%	65%	65%	тѕ
Concentrated Slurry % Fly Ash (Coal Scenarios)	24%	22%	13%	wt% Fly Ash
Concentrated Slurry SG	1.4	1.4	1.4	SG
Feed : Evap Ratio - Turbine Exhaust	1.1	1.12	1.26	Gal Infeed / Gal Evap
Feed : Evap Ratio - Flue Gas	1.14	1.15	1.3	Gal Infeed / Gal Evap
Slurry : Evap Ratio - Turbine Exhaust	0.11	0.12	0.26	Gal Slurry / Gal Evap
Slurry : Evap Ratio - Flue Gas	0.18	0.19	0.34	Gal Slurry / Gal Evap

<u>Notes</u>

1 - For Keg Mountain scenario, it is assumed the water will first be pre-concentrated through a VSEP membrane with 4 cycles of concentration

2 - For flue gas scenarios, this analysis does not account for the SO_2 mass balance; i.e., the side effect of capturing of SO_2 from the flue gas into the Heartland Concentrator and impact on system pH and solids balance.

NGCC Scenario	Mount Simon	Keg Mountain	San Andres	Unit
	400	400	400	MMGPY
Produced Water Processed	1,370,932	1,370,932	1,370,932	GPD
	952	952	952	GPM
Heartland Feed	400	100	400	MMGPY
	1,370,932	342,733	1,370,932	GPD
	952	238	952	GPM
% of Turbine Exhaust Required	29	7	25	%
Steam Turbine Electrical Derate	55	14.6	48	MW
Slurry Produced	94	26	201	GPM

Notes

Derate includes lost thermal energy to HRSG + Heartland parasitic electric load.

25

NGCC Scenario	Mount Simon	Keg Mountain	San Andres	Unit
	400	400	400	MMGPY
Produced Water Processed	1,370,932	1,370,932	1,370,932	GPD
	952	952	952	GPM
Heartland Feed	400	100	400	MMGPY
	1,370,932	342,733	1,370,932	GPD
	952	238	952	GPM
% of Turbine Exhaust Required	29	7	25	%
Steam Turbine Electrical Derate	55	14.6	48	MW
Slurry Produced	94	26	201	GPM

<u>Notes</u>

Derate includes lost thermal energy to HRSG + Heartland parasitic electric load.

NGCC Scenario	Mount Simon	Keg Mountain	San Andres	Unit
	400	400	400	MMGPY
Produced Water Processed	1,370,932	1,370,932	1,370,932	GPD
	952	952	952	GPM
Heartland Feed	400	100	400	MMGPY
	1,370,932	342,733	1,370,932	GPD
	952	238	952	GPM
% of Turbine Exhaust Required	29	7	25	%
Steam Turbine Electrical Derate	55	14.6	48	MW
Slurry Produced	94	26	201	GPM

<u>Notes</u>

Derate includes lost thermal energy to HRSG + Heartland parasitic electric load.

27

NGCC Scenario	Mount Simon	Keg Mountain	San Andres	Unit
	400	400	400	MMGPY
Produced Water Processed	1,370,932	1,370,932	1,370,932	GPD
	952	952	952	GPM
Heartland Feed	400	100	400	MMGPY
	1,370,932	342,733	1,370,932	GPD
	952	238	952	GPM
% of Turbine Exhaust Required	29	7	25	%
Steam Turbine Electrical Derate	55	14.6	48	MW
Slurry Produced	94	26	201	GPM

<u>Notes</u>

Derate includes lost thermal energy to HRSG + Heartland parasitic electric load.

NGCC Scenario	Mount Simon	Keg Mountain	San Andres	Unit
	400	400	400	MMGPY
Produced Water Processed	1,370,932	1,370,932	1,370,932	GPD
	952	952	952	GPM
Heartland Feed	400	100	400	MMGPY
	1,370,932	342,733	1,370,932	GPD
	952	238	952	GPM
% of Turbine Exhaust Required	29	7	25	%
Turbine Electrical Derate	55	14.6	48	MW
Slurry Produced	94	26	201	GPM

<u>Notes</u>

Derate includes lost thermal energy to HRSG + Heartland parasitic electric load.

29

Results – Coal Scenario

Coal Scenario A	Mount Simon	Keg Mountain	San Andres	Unit
	992	1,249	992	MMGPY
Produced Water Processed	3,397,769	4,279,066	3,397,769	GPD
r i ucesseu	2,360	2,972	2,360	GPM
Heartland Feed	992	312	992	MMGPY
	3,397,769	1,069,766	3,397,769	GPD
	2,360	743	2,360	GPM
% of Flue Gas Required	192	60	168	%
Plant Derate	99	32.7	86	MW
Slurry Produced	370	125	618	GPM

Notes

1 - Derate includes lost thermal energy to APH + Heartland parasitic electric load.

2 - Red highlight = Impossible scenario given flue gas requirement

3 - Yellow highlight = thermodynamically possible, but likely presents significant integration challenges with AQCS equipment and performance.

Derate Comparison

% of Flue Gas or Turbine Exhaust Required

SOLIDIFICATION / STABILIZATION

- Conduct bench scale studies to optimize mix formulations required for solidifying and stabilizing (S/S) solids
 - Based on simulated
 brine with high
 concentrations
- Utilize leaching environmental assessment framework (LEAF) testing to determine leachability of constituents of concern.

REMAINING WORK

- Conduct an economic feasibility study for the selected reservoirs
- In addition to VSEP/Heartland, evaluate
 - Forward Osmosis
 - Vapor Compression Evaporation
 - Crystallization
- Conduct a technical readiness review
- Complete solidification/stabilization study
- Evaluate opportunities to recover valuable minerals, efficiently utilize CO₂, and recover water
- Evaluate deep well injection for disposal

ACKNOWLEDGMENTS

USDOE for funding and Project Officer Maria Reidpath.

REFERENCES

Luo, J., L. Ding, Y. Wan and M. Y. Jaffrin (2012). "Threshold flux for shear-enhanced nanofiltration: Experimental observation in dairy wastewater treatment." <u>Journal of Membrane Science</u> **409–410**(0): 276-284.

Luo, J., Z. Zhu, L. Ding, O. Bals, Y. Wan, M. Y. Jaffrin and E. Vorobiev (2013). "Flux behavior in clarification of chicory juice by high-shear membrane filtration: Evidence for threshold flux." Journal of Membrane Science **435**(0): 120-129.

