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Objective of this project

NDE for thermal barrier coatings (TBCs)

NDE for additive manufactured (AM) samples

Summary
Planned FY2017 effort
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Objectives of This Project

= Develop and demonstrate advanced NDE methods for structural and
functional materials

— Current development is focused on thermal imaging NDE methods



Recent NDE Developments

= NDE for thermal barrier coatings (TBCs)
— Evaluation/modeling low-cost IR camera for industrial applications
— NDE analysis for TBC life prediction

= NDE for additive manufactured (AM) samples
— Evaluation 3D thermal diffusivity (for AM material isotropy)
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TBC Background — Material and Structure

= Thermal barrier coatings (TBCs) are commonly used to insulate
high-temperature metallic components in gas turbines
— TBCs may reduce metal surface temperature by >100°C

= TBCs are “prime reliant” material - nondestructive evaluation
(NDE) is needed for their condition monitoring and life prediction
— Need 100% coating surface inspection by imaging NDE

Uncoated and TBC-coated turbine blades

= TBC material:
yttria stabilized
zirconia (YSZ)

= TBC processing:
air plasma spraying
(APS) or electron
beam—physical
vapor deposition
(EB-PVD)




TBC Background — NDE Development

= Many NDE technologies were evaluated for TBCs in last few
decades - generally not very successful

= Current TBC analysis and quality control still relies on destructive
methods

Schematic of TBC system APS TBC EB-PVD TBC

Ceramic top coat
(TBC)

= This research has established Pulsed Thermal Imaging — Multilayer
Analysis (PTI-MLA) as a promising NDE method for entire TBC
lifetime evaluation



Pulsed Thermal Imaging — Multilayer Analysis
(PTI-MLA)

= PTI-MLA consists of a pulsed thermal imaging (PTI) experimental
system and a multilayer analysis (MLA) data-processing code

= PTI-MLA images two coating properties over entire coating surface
— thermal conductivity and heat capacity (or thickness)

PTIl experimental setup Thermal conductivity image




PTI-MLA: Principle for Coating Analysis

PTIl system setup
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Summary of PTI-MLA Capabilities

= PTI-MLA may evaluate TBC material in its entire life cycle
— Inspection of fabricated TBC components (for quality control)
— TBC health monitoring and life prediction during service
— Detection of TBC flaws/damages (for research and application)

= PTI-MLA is used in industrial applications

— Inspection of engine components (collaborated with Dr. A. Kulkarni of
Siemens Corp.)

— Recent developments to address all remaining issues



PTI-MLA for Industrial Applications

= Two factors affect PTI-MLA NDE for industrial applications:
— TBC translucency requires surface treatment (usually graphite paint)
— High-cost and large size of high-end IR cameras

= Solution: use low-cost LWIR camera (bolometer)
— TBC is naturally opaque at LWIR (7-13um) (no paint required)
— Bolometers are small and much cheaper (~10% of cooled IR camera)

State-of-the-art IR camera: SC4000

(Cooled, MWIR, 320x256, high speed) (Bolometer)
Low-cost IR camera: A35

(RT, LWIR, 320x256, 60Hz)
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Recent NDE Developments

= NDE for thermal barrier coatings (TBCs)
— Evaluation/modeling low-cost IR camera for industrial applications
— NDE analysis for TBC life prediction

= NDE for additive manufactured (AM) samples
— Evaluation 3D thermal diffusivity (for AM material isotropy)
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Evaluation of a FLIR A35 IR camera

= Various TBC samples were tested using SC4000 and A35

= A35 results were compared with SC4000 results (as “exact”)
— Compared parameters: TBC thickness and thermal conductivity
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Measured conductivity images for 0.36mm TBC

A35, unpainted TBC A35, painted TBC SC4000, painted TBC

—
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Error: +37% Error: - 4% Assumed: exact

= Comparison for TBC thickness are better (+16% and -2%)
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TBC measurement error by A35 camera

Thickness (L) and conductivity (k) error (%)

-20-

40+

-60 -

-80

60

40 -

20 A

0 (LA35/ I—SC4000'1 )

B (Kass'Kscaooo=1)

Prediction is acceptable when
TBC >0.3mm with paint

0.6 0.8 1
TBC thickness (mm)

1.4

14

AAAAAAAAAAAAAAAAA



PTI-MLA Development for Bolometers

= Modeling flash heat absorption inside translucent TBCs

= Modeling bolometer response time
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Modeling TBC Translucency for LWIR Camera

Painted TBC Unpainted TBC

From To LWIR To MWIR
flash lamp To IR camera camera
(<2.5um) camera (7-13pm) (3-5um)

7YSZ b b 4

= A model was developed for flash heat absorption inside unpainted TBC

= No model is needed for LWIR emission (surface emission only)
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Optical Model for TBC Heat Absorption

Flash heating as a function of coating depth q(z):

oz __ p1 e—a(ZL—z)

e
q(z) = q;1 (1 — po) 1— popLe—2%

a = optical attenuation coefficient
Py & p4 = surface reflectivity
L = coating thickness

Flash heating —» qil\/ o1

0

/N

qi qo
’ i Coating

Clia\/‘ Jo3

e

= This optical model was implemented in MLA code
— a =7 mm" was found to be appropriate for TBC button samples

— a can be different for other TBCs
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Modeling Bolometer Response Time

» In bolometer, pixel temperature change IR camera reading to abrupt
from absorbed incident thermal energy incident radiation change
is used to sense radiation intensity T
4 Cooled IR camera
= This process is modeled by: /‘
dAT \ Bolometer
P(t) = GAT + H——
dt
P(t) = incident power, <—— Response time = H/G
G = thermal conductance of thermal link .

H = pixel heat capacity

AT = relative pixel temperature (bolometer reading) te)

= When P(t) changes abruptly from 0 to a constant P at t=0, AT follows:

AT = g(j_ — e‘%‘) H/G = bolometer response time

= Response time for A35 is 12ms (& reason for poor NDE results for thin TBCs)

» Response time was implemented in MLA code

mw o T Olmow asonerory



TBC measurement error by A35 camera
- with heat absorption and response time models

Thickness (L) and conductivity (k) error (%)

TPainted TBCs; response-t
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Prediction is acceptable for all data
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Typical Measured TBC Thickness on Blade

A35, unpalnted TBC

A35, painted TBC SC4000, painted TBC

o BT 06mm

Error: -7.2% Error: - 6.5% Assumed: exact

= Error for measured TBC conductivity is similar (+7.7% and +7.4%)
— Note: errors of <10% are generally considered acceptable

= Errors in A35 results are mostly due to noise - higher flash heating
will reduce them! (especially for unpainted and thicker TBCs)
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Recent NDE Developments

= NDE for thermal barrier coatings (TBCs)
— Evaluation/modeling low-cost IR camera for industrial applications
— NDE analysis for TBC life prediction

= NDE for additive manufactured (AM) samples
— Evaluation 3D thermal diffusivity (for AM material isotropy)
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Thermal Imaging NDE for TBC Life Prediction

= TBC damage and life: TBC delamination/spallation from substrate

= NDE may examine detailed damage initiation and development
— Collaborated with Prof. Sampath’s group in Stony Brook University

Confirmation for cracks/delaminations in PTI-MLA data
PTI-MLA data Thermal tomography depth-slice data

.

X
. -\_@ o
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smEl e S LN
@0.15mm depth @0.3mm depth (interface)

1.2W/m-K @O0mm depth (surf;c.g)-

Cracks/delaminations at interface in all images — correlated well
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NDE for TBC Life Prediction

Thermal conductivity images for a thermal-cycled TBC (@1100° C)
120h_r 216hr 384hr

0.6W/m-K I 1.2W/m-K

= NDE data may detect crack initiation and propagation
— crack initiation and size increase with time (thru image analysis)
— crack gap expansion with time (thru conductivity value)
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Recent NDE Developments

= NDE for thermal barrier coatings (TBCs)
— Evaluation/modeling low-cost IR camera for industrial applications
— NDE analysis for TBC life prediction

= NDE for additive manufactured (AM) samples
— Evaluation 3D thermal diffusivity (for AM material isotropy)
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NDE for Additive Manufacturing (AM)

= AM is an emerging technology expected to be widely adopted
= Selective laser melting (SLM) has been used to make engine parts

= NDE will be an issue in future AM routine production

— No NDE has been established for:
— on-line monitoring
— quality inspection

We examined isotropy of AM
parts
— by measuring thermal diffusivity

in all three directions from same
AM sample

= Collaborated with Dr. J. Zhang of
Indiana University — Purdue
University Indianapolis
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Thru-Thickness Thermal Diffusivity Measurement

Test system setup

Sample/
. Flash
lamp

IR
camera

Thru-thickness diffusivity a, is measured by fitting data with:

1+2 Z(—l)"exp( n'n® azt)]

a, measurement accuracy is typically within 2%

Q
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Lateral Thermal Diffusivity Measurement

Test system setup Heat transfer field
observed by IR camera

Sample/
y

Flash
lamp
Shield x=0 X=a

IR
camera

Heated area

Lateral diffusivity a, is measured at each y level from:

T(x,z=1L,t)

oo
_ 1"'22 X  mma mnx mnia,t .
=3I ——— sin——cos——exp X2

2.2
+zz( 1)nexp( )

Measured a, was validated to be within 3% of a, for an isotropic steel sample
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Thru-Thickness Measurement

Typical measured

thru-thickness diffusivity image Typical fitting at a pixel

Experiment

Prediction

2 -
0 [* povpdppodad
i‘ I

1.5 HE 45 mmZ/S -0.03 0 0.03 0.06 0.09 0.12 0.15
t(s)

Measured mean a, = 3.97+0.023 mm?/s
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Lateral Measurement along Build Plane

Measured thermal diffusivities:

Thru-thickness 3.97+0.023
Build plane direction 3.97
Build direction 4.00

- AM sample is isotropic!

Typical measured data

Lateral diffusivity (mm?2/s)
3.8 3.9 4.0 4.1 4.2 4.3
40 P —

50
60
70
80 — — Lateral diffusivity

0 = Shield ljne (I-pixel)
100 =

110 T =

J pixel number

120047 112 113 114 115 116
| pixel number (shield line)

Tyglcal fitting along a line

. gl Shield /t =0.069s
T(°C) ;¢
6l
5|
4t
3 L
5l t=0.023s
1 L
O I I
'150 70 90 110 130 150 170

| pixel number
29 T Ogowussoratonr



Summary

= Thermal imaging NDE method was developed for TBCs
— May evaluate entire TBC life cycle

= Low-cost NDE system was developed for industrial applications

= Thermal imaging NDE may determine AM material isotropy
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Planned FY2017 Efforts

= Thermal imaging NDE method for TBCs:
— Continue TBC life prediction analysis
— Find simple approach to determine TBC translucency
— Study substrate curvature on TBC property prediction

= Thermal imaging NDE for AM material quality

= Tech transfer
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