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In 2013, 50% of new power generation capability came from
natural gas, which was used in gas turbine power plants
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These additions were split between “peaking plants” and
combined cycle plants, both of which use gas turbines
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Gas turbines, particularly peaking plants, will continue to play
an important role in the energy production market
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Objective of the program is to understand, quantify, and
predict combustion instability during transient operation

— Two major deliverables for the program:

1. Fundamental understanding of flow and flame
behavior during combustion transients and
mechanisms for transition to instability

2. Development of a stability prediction or
guantification framework



Objective of the program will be achieved through
experimental study and close ties with industry

— Experimental program that includes two separate,
complementary facilities

— Development of quantification and prediction
frameworks will aid in applying the results from this work
to other facilities, including industrial hardware

— Cost-share and partnership from GE Global Research will
provide industry feedback and internship opportunities for
students on project
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Very few studies have discussed the onset or control of
instabilities during transient operation, but it’s a common issue

Shutdown limit

‘_ EEEEE N EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEN 2
7
oy -
S S
Eo.6 =
g n
> b -E.-
- -
'~ - =¥
<_5‘0'4 =
—
Q =
£0.2 A
w - - w—
-
L
0 3 2 1 3 3 3 1 § § 1 '_
0 S0 100 150

Time from start [s]

Transient operation of a Siemens SGT-200 (Bulat et al. 2007) .



Engine load is typically varied by either varying fuel staging or
the equivalence ratio of certain fuel nozzles
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Instabilities may arise as a result of changes in flame shape and
flame anchoring that occur with variation in equivalence ratio

Photographs of multi-nozzle flame at U = 25 m/s, T,, = 200°C

* As the equivalence ratio is reduced, the flames get longer and more distributed
within the combustor

e At ¢ = 0.48, the middle flame lifts off (picture on far right)

A hysteresis phenomenon is observed with the lift-off of the middle flame



U =22.5m/s, T,, = 200°C, fully premixed, unforced
¢ = 0.65 ¢ =0.60 @ =0.55 ¢ =0.50




Changes in flame structure observed from photographs and
chemiluminescence images of multi-nozzle flame include:

When ¢ is reduced,
 The flame length increases

* The outer flames become more spread out (move both further upstream and
downstream)

* The angle of the middle flame reduces (i.e. it becomes narrower) and
eventually lifts off

* The interaction region loses its coherent structure (square shape)
e The CH* chemiluminescence becomes more distributed

e |t appears that a majority of heat release no longer occurs in the interaction
region



Flame-flame and flame-wall regions are separated from the
line-of-sight images

The regions are separated based on the locations of the centers of the outer nozzles

Chemiluminescence emission
from flame-flame interaction
region

CH* ¢ = @ - [®+®]

Chemiluminescence emission
from flame-wall interaction
region

CH* .y = CH® g - CH™
This yields reasonable results which may be more physically meaningful since we
are isolating parts of the flame that are being subject to very different phenomena

Comparing this to the summed heat release rate of the same regions obtained
from a 3-D image yielded differences of only 1%



The majority of heat release rate occurs in the flame-flame
interaction region when the middle flame is attached
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As a result we would expect mechanisms related to flame-wall interaction to
dominate the response of the lifted flames and vice versa



To further investigate the structure of the multi-nozzle flame,
3-D image sets were obtained at ¢ =0.60 and ¢ = 0.48

¢ =0.48

¢ =0.48

e As with previous
investigations, vertical
and horizontal 2-D
slices of the 3-D flame
image will be analyzed

 Middle flame does not
exist in the ¢p = 0.48
case

e Assingle large
interaction region is
observed downstream




Analysis of horizontal slices (¢ = 0.48)

 Asymmetries in the flame structure are more evident in this case

* Areas of large heat release rate near the walls at the base indicative of flame
spreading all the way down to the dump plane

* A majority of the heat release rate occurs at the flame-wall interaction regions



Analysis of horizontal slices (¢ = 0.60)

* A majority of the heat release rate occurs at the flame-flame interaction regions



The transient timescale, relative to other key timescales, may
result in “triggering” of combustion oscillation
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Very limited data is available on the behavior of flames at
different fuel splits except in the cases of flame piloting

Figure 9. MS7001EA/MS9001E emissions -
natural gas fuel
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Data from our multi-nozzle combustor shows that fuel splitting
changes flame structure and oscillation during instability

¢ = 0.6 in all nozzles
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The final area of interest is transients in fuel composition from
pure methane to higher levels of propane and hydrogen
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Three types of transients will be considered in the program
that mimic the types of transients used in operational turbines

Fuel Splitting Equivalence Ratio Fuel Composition
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The transients will be quantified using three different metrics:
amplitude, timescale, and direction

Amplitude
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The transients will be quantified using three different metrics:
amplitude, timescale, and direction
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The transients will be quantified using three different metrics:
amplitude, timescale, and direction

Timescale
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Experimental facilities include both a single-nozzle and multi-
nozzle combustor, fuel splitting on multi-nozzle only
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Project structure includes three stages of experimentation:
mapping, transients, and quantification

Transients Quantification
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Milestones are distributed over three years with internships
for graduate students at GE Global Research in two summers

Phase 1: Facility upgrades and diagnostic
installation

10

11

12

Phase 5: Testing of fuel composition
transients

1. Updated facility design completed

12. Testing of fuel composition
transients in multi-nozzle combustor
completed

2. Updated facility installation
completed

13. Testing of fuel composition
transients in single-nozzle combustor
completed

3. Shakedown testing completed

Phase 2: Combustor operational mapping

4. Test matrix design

14. Report of fuel composition transient
results from both combustors with
comparison and analysis

5. Single-nozzle combustor map
completed

Phase 6: Development of prediction
framework

6. Multi-nozzle combustor map
completed

Phase 3: Testing of fuel splitting transients

7. Testing of fuel splitting transients
completed

15. Integration of single-nozzle and
multi-nozzle results for three transient
operation types to identify
commonalities in flow/flame results
and precursor signals

8. Report of fuel splitting transient
results

Phase 4: Testing of equivalence ratio
transients

16. Development and implementation
of signal processing techniques for
utilizing precursors in prediction
methods

Phase 7 (optional): High-pressure testing

9. Testing of equivalence ratio
transients in multi-nozzle combustor
completed

17. Transient tests in high-pressure
facility at GE Global Research

10. Testing of equivalence ratio
transients in single-nozzle combustor
completed

11. Report of equivalence ratio
transient results from both combustors
with comparison and analysis

18. Implementation of stability
prediction framework in high-pressure
tests using precursor analysis methods

19. Comparison of high-pressure results
with results from Penn State
experiments
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Project budget

CATEGORY

a. Personnel

b. Fringe Benefits
c. Travel

d. Equipment

e. Supplies

f. Contractual
Sub-recipient
Vendor
FFRDC
Total Contractual

g. Construction

h. Other Direct Costs
Total Direct Costs

i. Indirect Charges

Total Project Costs

Budget Period 1 Costs

$94,641
$20,281
$2,000
S0
$5,000

$0
S0
S0
$0
$0

$33,322
$155,244
$61,813

$217,057

Budget Period 2 Costs

$97,005
$20,784
$2,000
S0
$2,000

$0
S0
S0
$0
$0

$78,886
$200,675
$61,748

$262,423

Budget Period 3 Costs

$99,436
$21,309
$2,000
$0
$2,000

$0
$0
SO
$0
$0

$80,272
$205,017
$63,248

$268,265

Total Costs

$291,082
$62,373
$6,000
S0
$9,000

$0
S0
S0
%0
S0

$192,480
$560,936
$186,809

$747,745

Project Costs %

38.9%
8.3%
0.8%
0.0%

1.2%

0.0%
0.0%
0.0%
0.0%
0.0%

25.7%
S1
25.0%

S1
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Project Management Plan

—Task 1 — Project management and planning

—Task 2 — Modification of current experimental facility with monitoring
diagnostics and new hardware for transient control

—Task 3 — Map combustor timescales at target operating points

—Task 4 — Design of transient experiments

—Task 5 — Fuel split transients

—Task 6 — Equivalence ratio transients

—Task 7 — Fuel composition transients

—Task 8 — Data analysis and determination of prediction/quantification

framework y



Risk Management Plan

—Risk 1 — Test matrix repeatability
— Randomized test matrix and baselining methodologies
—Risk 2 — Combustor stability and safety
— Close coordination with PSU safety office and combustor
monitoring
—Risk 3 — Flame flashback
— Combustor monitoring and test matrix design for H, addition in
small increments
—Risk 4 — Programmatic risks
— PI coordination on shared resources and project timeline
—Risk 5 — Cost-share implementation
— Continual coordination with GE Global Research throughout
duration of project will keep work at PSU tied to GE, making
internships more fruitful
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Questions?
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