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benefit to the program

— Program goals
— >99% storage permanence
— predict storage capacity to +/-30%
— improve storage efficiency.

— Project benefits: This project will produce new
materials and a novel method to seal leakage
pathways that transect the primary caprock seal and
are associated with active injection, extraction or

monitoring wells (e.g., wellbore casing and cement,
and proximal caprock matrix)
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project overview:
goals and objectives

— Project management and planning

— Coated silicate development, characterization and interaction in porous
media

— Fluid mixing and buoyancy experiments at formation T/P to optimize
material properties

— Evaluate the performance of coated mineral silicates in packed columns

— Targeted carbonation in porous media flow

— Targeted Carbonation of fractured wellbore-zone materials
— Imaging quantification of carbonation in pore networks and fractures

— 3D imaging of targeted carbonation in porous media

— 3D Imaging of targeted carbonation in fractured wellbore-zone materials
— Modeling Targeted Carbonation

— Multiphase fluid mixing and flow modeling

— Pore network/fracture reactive transport modeling

— Forward modeling of mitigated wellbore integrity



motivation and underlying chemistry
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motivation and underlying chemistry
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motivation and underlying chemistry

MSiO3(s) + CO2(1sc) = MCO3(s) + SiOys)
where M = Ca, Mg

adapted from http://www.co2crc.com.au




nanoparticle core

mineral
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reaction

MgSiOs + CO2= MgCOs + SiO2

MgSiO4 + 2C0O2 = 2MgCO3 + 2SiO2
Mg3Si2O5(OH)4 + 3CO2 = 3MgCOs3 + 2SiO2 + 2H20
2NaAlSi20Og + CO2 = Na2CO3 + 6SiO2 + Al2O3
CaSiOs + CO2= CaCOs + SiO2

Mg3SisO10(OH)2 + 3CO2 = 3MgCOs3 + 4SiO2 + H20
CaAl2Si2Og + CO2= CaCO3 + 2SiO: + Al2O3

Ea (kd/mol)

80.0
76.2
70.1
65.0
o4.7
51.4
48.4



nanoparticle core
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nanoparticle coating
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experimental setup
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mercury intrusion porosimetry
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precipitate relationship to flow

CO2 + H20 close to outlet

A CaSiOs3 + CO2=CaC0O3z+ SiO2




synchrotron XxCT images of columns

2D grey scale segmented 2D slice 3D volume
colors depict
connectivity
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synchrotron XxCT images of columns

2D grey scale below the Xe k-edge  the subtracted image
slice collected
above the Xe

k-edge
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synchrotron XxCT images of columns

| 5.5 MPa, 95°C,Wollastonite:Shale = 20:80, flow rate = 0.1 ml/min
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pore network modeling
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pore network modeling
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pore network modeling

* Flow field
the subscripts i and ij denote the pore body and pore throat

Qij [L3/T] is the volumetric flow rate of water from pore body i to j
G pz Pi —Pj _ 0 Gij [L5T/M] is the pore throat conductivity
ng 1] - .
; p [M/LT2] is the water pressure at pore body
Ni is the number of pore throats connected to pore body i,
Lij [L] is the pore throat length

’L

Species
Nz‘ Ni
VO 1 c de Cm . 0 D¥ AW CZm - C’ZL VORm
i (L= 5ij) a E max QZ]? - E mm(Qij, ) — E ( ij z'j)—L”/2 + Vi 1y
- o ’LJ
J J
Solid phase volume fractions e .
is the species mass/molar concentration
s € is the calcite volume fraction
/1] Vo [L3] is the volume of pore body in the absence of calcite

V/w

1

dt V;/ ij

Dwiij [L2/T] is the species dispersivity in water phase

Aw and Af ij ij ij [L2] are the cross-sectional areas of water phase and calcite in the
pore throat

R is the sink/source term

Z/%J

Calcite precipitation/dissolution

k1, k2 , and k3 are the reaction rate

24 2_ Np constants
H+ H-CO GG c a is the species activity
T'prec/diss — B(k?la + kaa 2 3 4 K3) 1— S Ksp is the solubility of product of calcite
Ksp np is an empirical parameter

Sc is the available specific area for calcite
precipitation in a pore element

Source/sink

RS = VE , _ . 20
= _Tp'rec/diss Ms is the molecular weight of solid phase



preliminary results

i

21



accomplishments to date

— Synthesized wollastonite nanoparticles (10s of nm to ums)
— Synthesized coatings with a LCST of 25°C

— Measured permeability change in packed columns reacted
with uncoated wollastonite

— Obtained xCT images of columns at APS

— Processed data using segmentation analysis to measure
connectivity of pores

— Imaged cores using pCT at UVa

— Used SEM and EDS to begin exploring connections between
flow and precipitation

— Developed pore network modeling framework
22



synergy opportunities

— w/ other PlIs in this program:

— Experience with nanoparticles use in fractures
and porous media

— Functionalization
— Transport
— Modeling
— w/ other Pls in Basalt storage area:

— Reaction of carbonates in high Pcoz environments
where the interplay between dissolution and
precipitation needs to be controlled
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summary

— Mineral silicates can be used to cement porous media and reduce its
permeability when delivered as nanoparticles and exposed to a high P
environment

— These reactions would leverage the favorable kinetic conditions of the deep
subsurface

— Our focus on developing temperature sensitive coatings is to control the
location (depth) where these reactions occur

— Ongoing experiments are showing the temperature sensitivity of these
functionalized nanoparticles

— The carbonation of these silicates and precipitation of the carbonates is
dependent on both CO, concentration (as a reactant) and H,CO3* (as an acid)

— Models are being developed to help us optimize the conditions under which
maximum carbonation will occur
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many thanks

EEEEEEEEEEEE

NERGY

N=TL ©E

25



I

anization Chart

Project PI/PD
A Clarens
(UYa)

Project co-Pl
J_Fitts (Princeton)
C. Petess (Princeton)

Coated Silicate Development and Testing

]

J

Modeling ]

3D Imaging in porous media
Task3.1
Fitts

3D Imaging In fractured media
Task32
Fits

Clarens Fitts, Peters, and Clarens
-~
Synthesis and characterization
Task 2.1
Clarens
.
1
~
Transport in tall column
Task 2.2
Clarens
\ )
| Multiphase flow modeling
-~
Task 4.1
Transport in short column e
Task 2.3 \ /
Clarens 1
\.
i | Pore-network transport
-
Transport In fractured media reactive modeling
Task 2.4 TaskA2
Fitts Fitts
\ \ J
1
Forward modeling of enhanced
welibore integrity
Task 43
Fitts
\ J

26



Gantt Chart
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