■155 South 1452 East Room 380

■Salt Lake City, Utah 84112

1-801-585-1233

Integrated Oxygen Production and CO₂ Separation through Chemical Looping Combustion with Oxygen Uncoupling

Project DE-FE0025076

Kevin J. Whitty (PI) JoAnn S. Lighty (co-PI) Andrew Fry (co-PI)

Project Kickoff Meeting 22 October 2015

Outline

- Background Chemical Looping Combustion
- Chemical Looping R&D at the University of Utah
- Project Details
 - Project objectives
 - Technical approach
 - Project structure
 - Project schedule
 - Project budget
 - Project management plan
- Current Status

Project Background: Chemical Looping Combustion

- Chemical Looping Combustion (CLC) identified as lowest energy penalty/ lowest cost CO₂ capture technology
- Technology introduced ca. 2001, great growth in research since then
- Most research focusing on processing gaseous fuels; less focus on coal
- UofU has been researching CLC since 2008
 - Six projects
 - Funding through U.S. DOE, U. Wyoming, ICCI, NSF
 - 12 published papers, 3 under review, many conference presentations

Chemical Looping – General

Air Reactor:

$$\frac{1}{2}O_2 + Me_xO_{y-1} \rightarrow Me_xO_y$$

$$C_nH_m + (2n + \frac{m}{2}) Me_xO_y$$

 $\rightarrow (2n + \frac{m}{2}) Me_xO_{y-1} + n CO_2 + \frac{m}{2}H_2O$

CLC of Solid Fuels (gasifier-based)

Air Reactor:

$$\frac{1}{2} O_2 + Me_x O_{y-1} \rightarrow Me_x O_y$$

Gasifier:

$$C + H_2O \rightarrow H_2 + CO$$

 $C + \frac{1}{2}O_2 \rightarrow CO$

$$CO + Me_xO_y \rightarrow Me_xO_{y-1} + CO_2$$

 $H_2 + Me_xO_y \rightarrow Me_xO_{y-1} + H_2O$

iG-CLC: in-Situ Gasification-CLC

Air Reactor:

$$\frac{1}{2} O_2 + Me_x O_{y-1} \rightarrow Me_x O_y$$

$$C + H_2O \rightarrow H_2 + CO$$

 $C + CO_2 \rightarrow 2 CO$

$$CO + Me_xO_y \rightarrow Me_xO_{y-1} + CO_2$$

 $H_2 + Me_xO_y \rightarrow Me_xO_{y-1} + H_2O$

CLC with Oxygen Uncoupling

$$Cu_2O(s) + \frac{1}{2}O_2(g) \leftrightarrow 2CuO(s)$$

- Thermodynamics
 - At high temperature, equilibrium of the metal oxidation reaction favors Cu₂O
 - Equilibrium partial pressure of O₂ is about
 0.05 atm at combustion temperatures
- Reactor system configuration
 - Air reactor: high concentration of O₂ forces reaction to the right
 - Fuel reactor: low concentration of O₂ forces reaction to the left
- Very few metal/metal oxide combinations exhibit CLOU behavior

CLOU for Solid Fuels

Air Reactor:

$$\frac{1}{2} O_2 + Me_x O_{y-1} \leftrightarrow Me_x O_y$$

$$Me_xO_y \leftrightarrow Me_xO_{y-1} + \frac{1}{2}O_2$$

$$C + O_2 \rightarrow CO_2$$

CLOU Heat Balance

Outline

- Background Chemical Looping Combustion
- Chemical Looping R&D at the University of Utah
- Project Details
 - Project objectives
 - Technical approach
 - Project structure
 - Project schedule
 - Project budget
 - Project management plan
- Current Status

Area 1:

Oxygen carrier development, characterization and production scale-up

Previous Research at University of Utah: Oxygen Carrier Development

- Oxygen carrier is key to CLC technology
- Desirable properties
 - Inexpensive
 - Readily available
 - Benign
 - Physically robust
 - High oxygen carrying capacity
 - Fast rates of oxidation and reduction
 - Sustained reactivity over thousands of cycles
- University of Utah focusing on CLOU carriers
 - Need production at scales of 1+ tons

Oxygen Carriers: "Off the shelf"

- > 50_TiO2_MM
 - 50% CuO by weight
 - TiO₂ support
 - Mechanically mixed, then extruded, calcined, sieved
 - Provided by ICPC, Poland
- 45_ZrO2/MgO_FG
 - 45% CuO by weight
 - MgO-stabilized ZrO₂ support
 - Mechanically mixed, then freeze granulated, calcined
 - Provided by Chalmers U, Sweden

Oxygen Carriers: UofU SiO₂-based

- SiO₂ support
 - Formed by starting with SiC, then calcining
 - Two forms of SiC used
 - SiC powder (abrasive grit)
 - SICAT SiC spheres (catalyst support)
- CuO added by wet impregnation
 - Rotary evaporator technique
 - Bake-then-coat vs coat-then-bake
 - 15, 20, 40 and 60% CuO loadings
 - Number of CuO impregnation cycles was varied from 1 to 10

CuO-on-SiC Oxygen Carrier Production

- Combine water, cupric nitrate hydrate, and silicon carbide
- Rotary evaporate water
- Calcine at ~300°C for 1 hr
- Next addition

% CuO Loading / Additions	10/2	20/1	20/2	20/4	40/1	40/2
Particle Density (g/ml)	3.31	3.22	3.29	3.43	4.15	4.005
Theoretical CuO Loading (wt%)	9.94	19.8	20.0	19.9	39.8	39.7
Theoretical O ₂ carrying capacity (wt%)	1.00	1.99	2.01	2.00	4.00	3.99

$$2Cu(NO_3)_2 \rightarrow 2CuO + 4NO_2 + O_2$$

 $CuO \rightarrow Cu_2O + \frac{1}{2}O_2$

Oxygen Carriers: UofU Copper-on-Ilmenite

- Ilmenite (FeTiO₃) used as support
 - Conventional CLC carrier (Ti/Fe)
 - Well characterized
 - Inexpensive (< \$100/ton)
- Wet impregnation
 - Rotary evaporator technique
 - Tested activated and non-activated ilmenite
 - 20 and 30% CuO loadings
 - CuO added in 6 to 9 cycles

A key consideration of CLOU technology is

Oxygen Uncoupling: The Performance of an Ilmenite Copper Bimetallic Carrier

Lab-Scale Experimental Systems

- Thermogravimetric apparatus (TGA)
 - Oxygen carrying capacity
 - Confirm active metal loading
 - Reaction kinetics
- Batch fluidized bed reactor (QFB)
 - Fluidized environment
 - Evaluation of agglomeration propensity
 - Fuel conversion studies

1.005 1.000

Rationale for Oxygen Carrier Development

- Development efforts are driven by the requirements of our PDU, which requires several tons of oxygen carrier over the course of our research program
 - PDU needs 150-200 kg inventory
 - Low cost is important ("copper on dirt")
 - Our current CuO-on-SiC carrier costs \$15-25 per kg
- We welcome collaboration with anyone who can provide at least 500 kg of CLOU carrier
 - Can provide evaluation of carrier in "real world" environment

Area 2:

Reactor performance and evaluation of CO₂ capture and carbon conversion efficiencies

Previous Research at University of Utah: Reactor Design and Process Evaluation

Focus on

- Reaction fundamentals
- Carbon conversion
- Fluidized bed reactor design
- CO₂ capture efficiency and purity

Several scales

- Fundamental lab-scale
- Small process bench-scale
- Pilot scale

Rate Determination: Overall Objectives

- Develop better understanding of oxidation and reduction mechanisms for Cu-based carriers
 - Work recently performed at e.g. Chalmers, CSIC, Columbia U.
- Evaluate dependence of rates on carrier properties
 - e.g., in the absence of mass transfer limitations, will all carriers with 30% CuO behave the same?
- Ultimately, develop universal rate expressions suitable for incorporation into system models, perhaps of the form

• For oxidation:
$$rate = A \exp\left(\frac{E_a}{RT}\right) \left[P_{O2} - P_{O2,eq}\right]^{\alpha} \left[Cu_2O\right]^{\beta}$$

• For reduction:
$$rate = A \exp\left(\frac{E_a}{RT}\right) \left[P_{O2,eq} - P_{O2}\right]^{\alpha} \left[CuO\right]^{\beta}$$

Range of Interest for Reaction Rates

- \succ X = fraction of Cu as CuO, with remainder as Cu₂O
- \triangleright PDU design assumption: Carrier cycling between X = 0.75 exiting air reactor and X = 0.30 exiting fuel reactor

Oxidation:

 $2Cu_2O + O_2 \rightarrow 4CuO$

Reduction:

 $4CuO \rightarrow 2Cu_2O + O_2$

Oxidation of Cu₂O to CuO

- Oxidation experiments present interesting challenge
 - Driving force for oxidation decreases with temperature
 - Fundamental chemical rate increases with temperature (E_a)
 - Possible grain boundary sintering may also contribute to reduced rate at high temperature
- Resulting "oxidation rate peak" observed by many groups
- Deciphering true kinetics is challenging

Oxidation: Isolating Influences of O₂ Driving Force and Temperature

- Oxidation rate affected by
 - Temperature (fundamental kinetics)
 - O₂ driving force, which depends on temperature
- Series of experiments to isolate these influences
 - Hold T constant while changing O₂ driving force
 - Hold O₂ driving force constant while changing T
- Rate evaluation allowed distinction between rate influences

Experiment number	Temperature (°C)	Equilibrium O ₂ part. press. (atm)	Supplied O ₂ part. press. (atm)	O ₂ "driving force" (atm)
1	876	0.010	0.050	0.040
2	962	0.060	0.100	0.040
3	994	0.110	0.150	0.040
4	1017	0.170	0.210	0.040

Experiment number	Temperature (°C)	Equilibrium O ₂ part. press. (atm)	Supplied O ₂ part. press. (atm)	O ₂ "driving force" (atm)
1	850	0.005	0.050	0.045
2	850	0.005	0.100	0.095
3	850	0.005	0.150	0.145
4	850	0.005	0.210	0.205

Measured Oxidation Rates

- Range of experimental conditions
 - Temperature
 - Reacting gas composition
- Four types of carrier materials
 - Various production techniques
 - Various CuO loadings

Modeling of Oxidation Rates

- Mechanism determined to be more challenging than simple reversible reaction kinetics
- Two regimes of reaction behavior identified
 - Low temperature, non-CLOU region
 - Best described by pore blocking kinetic mechanism

$$\frac{dX}{dt} = k \frac{1}{\exp\left(\frac{X}{\lambda}\right)} \left[P_{O_2}^{\beta} - P_{O_2,eq}^{\beta}\right]$$

- High temperature CLOU region
 - Activation energy must be separated into thermodynamic and kinetic barriers
 - Best described by nucleation and growth mechanism

$$[-\ln(1-X)]^{1/n} = k_{\text{app}} \times t$$

Measurement of CuO Reduction Rates

- Similar to oxidation studies
- Range of conditions
 - Temperature
 - Gas composition
- Challenge of having absolutely zero O₂ in gas phase
- Reaction order in CuO = 0
- Apparent activation energy 274 kJ/mol

Modeling of Carrier Reduction Rates

- Any oxygen in gas phase reduces driving force for reduction
- Used similar methodology to deciphering specific influences for oxidation
 - Vary (p_{O2,eq} p_{O2}) at constant temperature
 - Hold (p_{O2,eq} p_{O2}) constant at various temperatures
- Could decipher constants in rate expression
- Universal rate expression:

rate
$$\left(\frac{g}{s} \frac{1}{g_{\text{Cu}}}\right) = 3.90 \times 10^{-4} \exp\left(-\frac{62,000}{R \times T}\right) [6.057$$

 $\times 10^{-11} \exp^{0.02146 \times (T-273)} - P_{\text{O}2}]$

Coal Conversion in Lab-Scale Fluidized Bed

- Three fuels tested
 - Illinois #6
 - Black Thunder PRB
 - Green petcoke
- Two carriers tested
 - 45% CuO on ZrO₂
 - 50% CuO on TiO₂
- Fuel introduced batch-wise
 - Dropped onto top of bed shortly after turning off air
- Conversion performance determined based on concentrations of gases in reactor effluent

Fuel Type	Illinois #6 Bituminous	Black Thunder PRB Sub-bituminous	Green Coke Petroleum Coke
Proximate Analysis			
Moisture (wt% as received fuel)	2.54	21.30	0.4
Ash (wt% Dry)	12.33	6.46	0.39
Volatile matter (wt% dry)	39.40	54.26	11.03
Fixed carbon (wt% dry)	48.28	39.28	88.01
Ultimate Analysis (wt% dry ash-free)			
Carbon	78.91	74.73	89.21
Hydrogen	5.50	5.40	3.78
Nitrogen	1.38	1.00	1.73
Sulfur	4.00	0.51	5.82
Oxygen	10.09	18.27	4.41
Chlorine	0.11	0.08	
Heating Value			
HHV, dry (Btu/lb)	12,233	12,815	15,622

Coal Conversion Performance

- Ranking of fuel conversion
 - PRB > Illinois #6 > petcoke
- Particle size matters
 - Smaller is faster
 - Largest particles not converted in the time needed to release all oxygen from CLOU particles
 - Consequence of batch design

University of Utah CLC System

- Targeting Wyoming PRB Coal
- Under construction at Industrial Combustion and Gasification Research Facility (ICGRF)
- Target 100 kW_{th}. Systems can handle 220 kW_{th}

UofU 220 kW CLC PDU

CLC PDU Construction Progress

UofU 220 kW CLC PDU

Area 3:

Reactor simulation and process modeling

System Modeling – Early Analysis

(Basis: 100 kg/h carbon input)

Aspen Plus Simulation

UofU CLC PDU Reactor Modeling

Hydrodynamic Studies: Cold-Flow Unit

- Air reactor fluidizing velocity of 2.39 m/s (91 scfm)
- Fuel reactor fluidizing velocity of 1.94 m/s (71 scfm)
- Determine circulation rates
- Determine pressure profiles
- Determine particle residence time
- Determine bed mass and other operating parameters

Outline

- Background Chemical Looping Combustion
- Chemical Looping R&D at the University of Utah
- Project Details
 - Project objectives
 - Technical approach
 - Project structure
 - Project schedule
 - Project budget
 - Project management plan
- Current Status

Project Objectives

- Primary objective: Advance development of chemical looping with oxygen uncoupling (CLOU) to pilot scale
- Specific objectives
 - Evaluate performance of CLOU processing of U.S. coals in a pilot scale system over a range of conditions with focus on carbon conversion and CO₂ capture
 - Scale up and production of low-cost CLOU oxygen carriers
 - Design robust carbon stripper to maximize carbon conversion and CO₂ capture
 - Develop modeling and simulation tools for improving understanding of CLOU process, troubleshooting, optimization and scale-up

Technical Approach

- Overall objective is to advance CLOU to pilot scale
- Four technical tracks
 - 1. Operation and evaluation of pilot-scale process development unit (PDU) for CLOU
 - CO₂ capture efficiency
 - CO₂ purity
 - 2. Evaluation of carbon conversion and carbon stripper design
 - 3. Process modeling and reactor simulation
 - 4. CLOU oxygen carrier production scale-up and evaluation

Project Structure

- Four technical tracks
- Eight technical tasks
 - 4 per year each following one technical track
 - In addition, one management task
- Two organizations
 - University of Utah
 - Amaron Energy

Interaction and Goals

Project Structure – Tasks

- 1. Project management
- 2. Construction of rotary kiln
 - 2.1 Design/construction
 - 2.2 Refine procedure for kiln-based CLOU OC production
 - 2.3 Initial production of CLOU carrier
- 3. Construction and preliminary testing of pilot-scale CLC system
 - 3.1 Completion of CLC PDU construction
 - 3.2 Verification of pilot subsystems
 - 3.3 CLC in non-CLOU mode
 - 3.4 Initial assessment of CLOU performance
- 4. Evaluation of carbon conversion in CLOU environment
 - 4.1 Lab-scale evaluation of carbon conversion and properties
 - 4.2 Characterization of char carried over from fuel reactor
- 5. CLOU system modeling
 - 5.1 CLOU process modeling
 - 5.2 Computational simulation of dual-bed CLOU reactor

Project Structure – Tasks Year 2

- 6. Production and characterization of CLOU carrier particles
 - 6.1 Production of CLOU carrier for pilot system
 - 6.2 Characterization of CLOU oxygen carrier
- 7. Evaluation of CLOU performance and CO₂ capture at pilot scale
 - 7.1 Parametric testing of CLOU
 - 7.2 Optimization of CLOU operation
- 8. Carbon stripper design and operation
 - 8.1 Design and simulation of carbon stripper
 - 8.2 Carbon stripper fabrication and installation
 - 8.3 Evaluation and optimization of carbon stripper
- 9. Design of 10 and 100 MW_{th} CLOU reactors
 - 9.1 Simulation and validation of dual bed CLOU reactor
 - 9.2 Design of 10 and 100 MW reactors

Project Organization

Project Schedule

TASK	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
Task 1 - Project management and planning	★ M1.1 ★ M1.2			★ M1.3				
Task 2 - Construction of rotary kiln CLOU carrier production facility								
2.1 - Design/construction of rotary kiln for oxygen carrier production		M2.1						
2.2 - Refine procedure for kiln-based CLOU carrier production								
2.3 - Initial production of copper-based CLOU oxygen carrrier								
Task 3 - Preliminary testing of CLOU performance at pilot scale								
3.1 - Completion CLC PDU construction	M3.1	\bigstar	L	L	\neg			
3.2 - Verification of pilot subsystems and circulation rate								
3.3 - Chemical looping combustion in non-CLOU mode								
3.4 - Initial assessment of CLOU performance in pilot system			_	★ M3.2				
Task 4 - Evaluation of carbon conversion in CLOU environment								
4.1 - Lab-scale evaluation of carbon conversion and char properties				_				
4.2 - Characterization of char carried over from pilot fuel reactor								
Task 5 - CLOU system modeling								
5.1 - CLOU Process modeling								
5.2 - Computational simulation of dual-bed CLOU reactor								
Task 6 - Production and characterization of CLOU oxygen carrier particles								
6.1 - Production of CLOU oxygen carrier for pilot system								
6.2 - Characterization of CLOU oxygen carrier particles								
Task 7 - Evaluation of CLOU performance and CO ₂ capture at pilot scale					H↓ ↓	. ↓		ŀ
7.1 - Parametric testing of CLOU							lacksquare	\downarrow
7.2 - Optimization of CLOU operation								
Task 8 - Carbon stripper design and and operation					\downarrow		Ĵ	
8.1 - Design and simulation of carbon strippper					Ì			
8.2 - Carbon stripper fabrication and installation						M	3.1	
8.3 - Evaluation and optimization of carbon stripper performance								
Task 9 - Simulation and scale-up of integrated CLOU reactor						\downarrow		
9.1 - Simulation and validation of dual-bed CLOU reactor						·		
9.2 - Design and simulation of large scale CLOU reactors								M9.1 ★

Project Budget

- Total budget: \$2,350,400
 - 80% DOE
 - 17% UofU cost share
 - 3% Amaron cost share
- > \$353,000 subcontract
 - Amaron Energy
 - includes \$71k cost share

Institution	Govt. Share	Cost Share	Total
University of Utah	1,597,665	399,416	1,997,081
Amaron Energy	282,655	70,664	353,319
Total	1,880,320	470,080	2,350,400
Share percentage	80%	20%	100%

- Breakdown (approx)
 - 33% salaries
 - 18% equipment
 - 21% supplies, fuel, utilities, facility fee
 - 28% overhead
- One 24 month budget period

Estimated Project Costing Profile

Baseline Reporting Quarter	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9
Period Start	09/01/15	10/01/15	01/01/16	04/01/16	07/01/16	10/01/16	01/01/17	04/01/17	07/01/17
Period End	09/30/15	12/31/15	03/31/16	06/30/16	09/30/16	12/31/16	03/31/17	06/30/17	08/31/17
Baseline Cost Plan									
Federal Share	110,730	274,658	195,221	226,875	226,875	214,126	205,006	198,926	195,886
Non-Federal Share	67,702	121,864	22,567	6,770	6,770	53,532	51,252	49,732	48,972
Total Planned	178,432	343,323	244,026	283,594	283,594	267,658	256,258	248,658	244,858
Cumulative Baseline Cost Plan									
Federal Share	110,730	385,388	580,609	807,484	1,034,359	1,248,486	1,453,492	1,652,418	1,848,304
Non-Federal Share	67,702	189,566	212,134	218,904	225,674	279,206	330,457	380,189	429,160
Total Planned	178,432	521,755	765,781	1,049,375	1,332,969	1,600,627	1,856,885	2,105,543	2,350,400

Project Management Plan

- I. Executive Summary
- II. Organization and Structure
- III. Risk Management
- IV. Milestone Log
- V. Funding and Costing Profile
- VI. Project Timeline
- VII. Success Criteria at Decision Points

Project Management Plan: Risk Management

Description of Risk	Probability (Low, Moderate, High)	Impact (Low, Moderate, High)	Risk Management Mitigation and Response Strategies
Technical Risks:			
Unsuccessful production	Low	High	(1) Target lower Cu loading
of oxygen carrier			(2) Produce smaller batches (1) Regular cleaning
Plugging/fouling of pilot reactor or feed system	Low	Moderate	(2) Installation of e.g. cleaning jets
reactor of feed system			(3) Redesign of affected components
Excessive attrition/loss of			(1) Increase production of carrier material
oxygen carrier	Low	Moderate	(2) Reduce load/circulation rate(3) Identify alternate materials
Resource Risks:	L	<u> </u>	(5) Identify unternate materials
Unavailability of lab-scale	Low	Moderate	(1) Organized scheduling of equipment
experimental systems	Low	Wioderate	(2) Availability of similar (analytical) equipment.
Management Risks:			
Project costs exceed	Low	High	(1) Regular monitoring of finances, EOR system
budget	Low	111gii	(2) Selective reduction in force
Loss of key personnel	Low	Moderate	(1) Multiple PI's familiar with all areas of project(2) Replace with next-best-suited candidate

Project Management Plan: Milestone Log

Task Number	Milestone Description	Planned Completion	Actual Completion	Verification Method
1	M1.1 Updated project management plan	09/30/2015	09/29/2015	Project Management Plan file
1	M1.2 Kickoff meeting	10/31/2015		Presentation file
3.1	M3.1 Completion of construction of pilot scale CLC system	12/31/2015		Photograph in quarterly report
2.1	M2.1 Fabrication of oxygen carrier production rotary kiln	03/31/2016		Photograph in quarterly report
3.4	M3.2 First pilot testing with CLOU oxygen carrier	07/31/2016		Data presented in quarterly report
1	M1.3 Updated project management plan	09/30/2016		Project Management Plan file
8.2	M8.1 Installation of carbon stripper into CLC pilot plant	04/30/2017		Photograph/discussion in quarterly report
9.2	M9.1 Simulation of 100 MW dual bed CLOU system	09/30/2017		Data presented in quarterly report

Project Management Plan: Success Criteria at Decision Points

- "Go" for Task 3.3 (pilot operation in non-CLOU mode)
 - Steam flow controllable 75-150 kg/hr
 - Air flow controllable 150-300 kg/hr
 - Ability to preheat steam to min 400°C
 - Ability to preheat air to min 400°C
 - Ability to circulate solids min 1200 kg/hr
- "Go" for Task 3.4 (pilot operation in CLOU mode)
 - Non-CLOU operation at min temp 850°C for 4 continuous hrs
 - 10 hours of CO₂ & O₂ measurements from fuel and air reactors
 - Minimum production of 150 kg of oxygen carrier with minimum 20% CuO

- "Go" for Task 7.1 (parametric testing of CLOU)
 - Minimum 50 hrs operation of PDU with at least 20 hours in CLOU mode
 - Minimum 10 successful measurements of solid carbon in coal, oxygen carrier from reactors and bag house particulate
 - Min 300 kg of Cu-based carrier available
- "Go" for Task 9.2 (design/simulation large CLOU reactors)
 - Simulation of PDU with min 3 carrier circulation rates and 3 coal feed rates, with min 30 seconds simulated steady state operation
 - Incorporation of heat transfer and kinetics
 - Comparison of simulated PDU to actual PDU for at least 3 different conditions

Outline

- Background Chemical Looping Combustion
- Chemical Looping R&D at the University of Utah
- Project Details
 - Project objectives
 - Technical approach
 - Project structure
 - Project schedule
 - Project budget
 - Project management plan
- Current Status

Status: Oxygen Carrier Production

- Parametric optimization of CuO-on-SiC procedure underway
 - Number of addition cycles
 - Calcining time and temperature
- Large-scale kiln design complete (Amaron Energy)
 - Indirectly heated by two NG burners
 - Approx 70 kg of carrier per batch
 - Production procedure based on UofU development
- Bench-scale kiln design complete
 - Electrically heated
 - Approx 8 kg per batch
 - Suitable for 10 kW reactor
- 250 kg of CuO(NO₃)₂·3H₂O ordered and received

Status: Reactor Operation and Evaluation

- Pilot-scale PDU
 - Electric preheaters installed
 - Duct burner preheat chamber designed, built, installed
 - Plenum and distributor completed and installed for both reactors
 - Air reactor / duct burner blower installed
 - Utility and steam supply lines installed
 - Instrumentation and control system in progress
- Ilmenite oxygen carrier ordered (1 ton)
- Bench-scale (10 kW) system upgrades nearly complete

Status: Reactor Simulation and Process Modeling

Reactor simulation

- Have negotiated license agreement for Barracuda with CPFD
 - University of Utah CPFD's first Academic Center of Excellence
 - Unlimited licenses
- Cold flow model evaluation ongoing
- Incorporating reaction kinetics
- Simulating 10 kW and PDU reactors

Process modeling

- Updated Aspen model
- Evaluated inter-reactor heat flow and preheat/cooling demand

CLOUL AD Tame	040	045	050	055	000	065	070	075
CLOU - AR Temp	940	945	950	955	960	965	970	975
delTemp (°C)	-10	-5	0	5	10	15	20	25
Q Air Reactor (kW)	403.41	345.92	288.32	230.63	172.83	114.93	56.93	-1.18
Q Air Preheat								
(Preheat to 400 °C)	-104.47	-104.47	-104.47	-104.47	-104.47	-104.47	-104.47	-104.47
(kW)								
Q Fuel Reactor (kW)	-51.97	3.78	59.64	115.59	171.65	227.81	284.07	340.43
Q Flue Recycle Preheat								
(Preheat to 675 °C)	-150.81	-150.81	-150.81	-150.81	-150.81	-150.81	-150.81	-150.81
(kW)								
Q AR Exhaust (kW)	256.31	258.05	259.79	261.53	263.27	265.01	266.76	268.5
Q FR Exhaust (kW)	353.16	353.16	353.16	353.16	353.16	353.16	353.16	353.16
Q Total (kW)	705.63	705.63	705.63	705.63	705.63	705.63	705.64	705.63
Q AR/Q Air Preheat	298.94	241.45	183.85	126.16	68.36	10.46	-47.54	-105.65
(kW)	236.34	241.45	105.05	120.10	00.30	10.46	-47.34	-105.05
Q FR/ Q Flue Recycle	-202.78	-147.03	-91.17	-35.22	20.84	77	133.26	189.62
Preheat (kW)	-202.78	-147.05	-91.17	-33.22	20.64	"	155.26	185.02
Q AR/Q Air Preheat	298.94	241.45	183.85	126.16	68.36	10.46	-47.54	-105.65
(kW)	298.94	241.45	183.85	126.16	68.36	10.46	-47.54	-105.65
Q Fuel Reactor (kW)	-51.97	3.78	59.64	115.59	171.65	227.81	284.07	340.43
Q Air Reactor (kW)	403.41	345.92	288.32	230.63	172.83	114.93	56.93	-1.18
Q FR/ Q Flue Recycle	-202.78	-147.03	-91.17	-35,22	20.84	77	133.26	189.62
Preheat (kW)	-202.78	-147.03	-51.17	-55.22	20.84	"	155.26	169.62

University of Utah CLC Group

