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PROJECT PARTICIPANTS




Southwest Research Institute

Independent, nonprofit applied research and e  Over 1,200 acres facility in San Antonio,
development organization founded in 1947 Texas
Eleven technical divisions — 200+ buildings, 2.2 million sq. ft of
—  Aerospace Electronics, Systems Engineering & laboratories & offices
Training — Pressurized Closed Flow Loops
—  Applied Physics — Subsea and High Altitude Test Chambers
—  Applied Power — Race Oval and Crash Test Track
—  Automation & Data Systems — Explosives and Ballistics Ranges
—  Chemistry & Chemical Engineering — Radar and Antenna Ranges
— Engine, Emissions & Vehicle Research —  Fire testing buildings
—  Fuels & Lubricants Research — Turbomachinery labs
— Geosciences & Engineering _
— Mechanical Engineering 1
— Signal Exploitation & Geolocation
— Space Science & Engineering
Total 2013 revenue of $592 million o
— 38% Industry, 36% Govt., 26% Govt. Sub §
— $6.7 million was reinvested for internal ~
research and development -
Over 2,800 staff
— 275 PhD’s / 499 Master's / 762 Bachelor's v
I 2.1 Miles "
. Benefiting government, industry and the public ROTATING

through innovative science and technology “’_A};'mn;é‘!



Machinery Program

* Fluids & Machinery Engineering
Department

— Mechanical Engineering Division (18)
e Specialties

— Turbomachinery component design and
testing

— Root cause failure analysis

— Rotordynamic design/audit
— Pipeline/plant simulation
— CFD and FEA analysis

— Test stand design
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— Performance testing
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Thar companies:

Systems for fuel production, power generation
and geothermal heating and cooling

Process Supercritical fluid process design and toll
extractions from organic feedstocks

Core competencies:

e 25+ years commercializing “Green”
supercritical fluid technologies (SCF)

S, W RZ

e Designer and developer of supercritical
fluid processes, systems & major

components | i |

e Industrial scale 24/7/365 installations, jq‘.:

world wide: DAl
» Food poy

» Chemicals

» Nutraceutical
» Pharmaceutical Shown If’Fere
» Chemical

Pharmaceutlcal productlon system

e Heat exchangers for high pressure, high ... Good Manufacturing Process
temperature application

.. Supercritical fluid extraction



e (CO2 Compression

e sCO2 Cycles and Components

e Renewable Energy

N

Recent DOE Program

Y

CO2 Compressor, NETL, Q1-15

Sunshot Expander, NREL, Q4-15 (SwRI + Thar)
Oxyfuel, NETL, Q1-16 (SwWRI + Thar)

sCO2 Recuperator, NETL, Q1-16 (Thar + SwRI)
sCO2 Heat Exchanger, NETL, Q1-16

sCO2 Utility Scale, NETL, Q1-16

sCO2 Heat Management - Focus, ARPA-E, Q3-16
CSP sCO2 Seal Test, NREL, Q3-16

Sunshot Combustor, NREL, Q4-15
Linear Motor Compressor, EERE, Q2-17
LNG Fracking, EERE, Q2-17
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PROJECT AND TECHNOLOGY
OVERVIEW




Project Objectives

e |dentify technical challenges impacting the
integration of fossil based thermal sources with
highly recuperated closed Brayton sCO2 power
cycles

* Evaluate the impact of boiler design and sCO?2
cycle configuration on integrated plant
performance, cost, and operability

* Evaluate technology readiness of the integrated
system and identify specific technologies
requiring development advance fossil based sCO2

cycles.
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Why sCO2 Power Cycles?

e Thermal efficiencies approaching 50% at 700°C,
65% at 1,200°C for the Recompression Cycle

o Offer +3 to +5 percentage points over
supercritical steam for indirect coal fired
applications

* High fluid densities lead to compact
turbomachinery

e Efficient cycles require significant recuperation
e Compatible with dry cooling techniques

(Swirl B
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Thermal Efficiency

Representative Cycle Efficiencies
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“Typical” sCO2 Cycle Conditions

Application Organization Motivation Size [MWe] Temperature [C] Pressure [bar]

Nuclear DOE-NE Efficiency, Size 300 - 1000 400 - 800 350

Fossil Fuel DOE-FE Efficiency, Water 500 - 1000 550-1200 150 - 350
Reduction

Concentrated DOE-EE Efficiency, Size, 10, 100 500 - 1000 350

Solar Power Water Reduction

Shipboard DOE-NNSA Size, Efficiency 10, 100 400 - 800 350

Propulsion

Shipboard ONR Size, Efficiency <1,1,10 230 - 650 150 - 350

House Power

Waste Heat DOE-EE Size, Efficiency, 1,10, 100 < 230; 230-650 15 - 350

Recovery ONR Simple Cycles

Geothermal DOE-EERE Efficiency, 1, 10, 50 100 - 300 150
Working fluid

|
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Fossil Based sCO2 Power Cycles

* Competition

— Indirect:  Supercritical Steam with CCS

— Direct: Natural Gas Combined Cycle
 Advantages

— High power efficiencies at “Moderate” temperatures

— Oxy-combustion facilitates integrated carbon capture

— Compact turbomachinery lead to compact power blocks

— Partially offset by recuperation to achieve high cycle efficiencies
e Challenges

— 250 C thermal input temperature widow (recompression cycle) is not ideal for
combustion based systems
e 400 C Combustor inlet for 650 C Turbine Inlet
e 950 C Combustor inlet for 1200 C Turbine inlet

— Flue gas cleanup for direct fired systems
— Non-trivial efficiency losses for indirect cycles
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Temperature (C)

Recompression Cycle
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Nominal 10 MWe RCBC test facility
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Integration Challenges

e Mismatched thermal input leads to inefficiencies
in the boiler or heater

 Addressed by

— Optimizing the power cycle to change thermal input
characteristics

— Adapting the thermal system to the power cycle
e Recuperated thermal system
e Direct fired configurations

* |mpact of sCO2 interface heat exchanger design
on system performance is unknown
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Recompression Cycle

 Leverages recent SunShot and
DOE-NE cycles development

i ngh efficiencies pOSSib|e for Compressor.
the power blOCk Thermal

— 60% at 1100C

 High degree of recuperation
drives a narrow thermal input
window (~250C) and high

mass fIOW reqUIrementS :;ZZ: Thermal BB‘”_. 1000;
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— 950 C Combustor inlet for 1200 .|
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Partial Condensation Cycle

* Trans-critical cycle

 Optimization schedules
the vapor phase
compression, cooling
for liguefaction, and
liquid pumping to
reduce compression
power requirements
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Cycle Comparison

Net fuel to bus bar plant
efficiency

Total Recouperation (kW)
HE Duty per Net Power
Ratio (kW/kW)

Power per Mass Flow Ratio
(k)/kg)

Combustor Inlet Temp. (°C)
Combustor Inlet Pres. (bar)

Single
Recouperator
Condensation

54.03%

989.91
2.48

399.06

755.18
300.00

Single
Recouperator
Condensation

51.60%

1078.16
3.21

335.38

808.60
200.00

** Cycles evaluated at 1200°C Turbine Inlet Temperature and 1 kg/s mass flow

Recompression

56.73%

1163.44
4.34

268.08

918.16
300.00

Recompression

53.44%

1205.34
6.55

183.92

994.37
200.00
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sCO2 “Boiler”

e sCO2 Recuperators are being actively developed
to address TRL for the power cycle

e Air fired sCO2 heaters are not an off the shelf
component for integrated systems

 Challenges
— Dis-similar fluid densities, heat capacities
— High dP between air and sCO2 at high temperatures

— Minimizing air side pressure drop with high volumetric
flows

— Managing air side fouling

(Swirl B
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Plate and Fin Heater Concept

Heater
HX
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Easy to manufacture.

Integrated manifold can
handle CO2 pressure.

Combustion gas side
pressure drop is low.

Staggered fin increases
heat transfer.

Lower probability of
plugging on combustion
gas side.
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Absorption/Desorption

e Utilize Absorption/Desorption of a binary mixture
to minimize compression work

— CO2 (R744)
— Acetone or Ethanol

* Previously evaluated for increasing Coefficient of
Power for refrigeration cycles

e |nitial Aspen models indicate a 60% reduction in
compression work is possible

— Provides a 5% to 10% gain in cycle thermal efficiency
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Challenges

e Verification of fluid properties at conditions of
Interest

— Test for a dense phase compressibility doublet

e Adaptation of sCO2 cycles

— Evaluate Absorption/Desorption process and
applicable range of temperatures and pressures

e Optimization of the cycle

]
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PROPOSED SCOPE

]
° ROTATING
12/17/2015 DE-FE0025348 Project Kickoff 24 H
maCHlNEhy




Project Objectives

e |dentify technical challenges impacting the
integration of fossil based thermal sources with
highly recuperated closed Brayton sCO2 power
cycles

* Evaluate the impact of boiler design and sCO?2
cycle configuration on integrated plant
performance, cost, and operability

* Evaluate technology readiness of the integrated
system and identify specific technologies
requiring development advance fossil based sCO2

cycles.
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SOPO Tasks

e Task 1.0 — Project Management and Planning

e Task 2.0 — Evaluation of Fossil Fired sCO2
Power Plants

e Task 3.0 — Critical Component and Technology
ldentification for sCO2 based Power Plants

e Task 4.0 — Component and Boiler Technology
Assessment

e Task 5.0 — Evaluation of Novel sCO2
Absorption/Desorption Cycles

SwhI




Task 2.0 — Evaluation of Fossil Fired
sCO2 Power Plants

e Evaluate sCO2 cycle configurations to establish
operating requirements for an indirect fossil
based power plant
— Recompression and Partial Condensation cycles

— Review work of Angelino and Dostal for additional
cycle configurations of interest

 Baseline component performance
requirements for thermal sub-systems

SwhI




Task 3.0 — Critical Component and Technology
ldentification for sCO2 based Power Plants

e |dentify critical components and determine
their impact on a fossil based sCO2 plant using

— Design space exploration
— Sensitivity studies of the integrated power plant

* Down select and optimize cycle configurations
for overall efficiency

— Focus is on indirect cycles
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Task 4.0 — Component and Boiler
Technology Assessment

e Assess boiler integration issues for sCO2
power cycles

— Technical gap assessment to identify of critical
components and development needs

— Evaluate feasibility of existing boiler configurations
to meet needs of sCO2 cycles

— Evaluate the sCO2/Air heat exchanger

e Analysis, prototyping, and bench scale evaluation
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Task 5.0 — Evaluation of Novel sCO2
Absorption/Desorption Cycles

e Evaluate the application of
Absorption/Desorption to power generation

— Utilize absorption of CO2 into Acetone or Ethanol to
minimize compression work

 Fluid properties verification at conditions at high
P and T than is available in literature

— Physical properties testing
— Desorption and separation

 Materials compatibility review
e Cycle definition, evaluation, and optimization
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PROGRAM MANAGEMENT




Schedule
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Task Name

- [start

= Task 1.0 — Project
Participant Coordination

and Pl

= Task 2.0 — Evaluation of Fossil Fired sCO2 Power

Plants
Thermal System Requirements
Cycle Evaluation
Critical Component Identification

= Task 3.0 — Critical Component and Technology
Identification for sCO2 based Power Plants

Thu 10/1/15
Thu 10/1/15
Thu 10/1/15

Thu 10/1/15
Fri 1/1/16
Fri4/1/16
Fri 4/1/16

Design space exploration and sensitivity studie Fri 4/1/16

Cycle Optimization
= Task 4.0 — Component and Boiler Technology
Assessment

Technical Gap Assessment

sCO2 Cycle Layout Considerations and Boiler

Integration

sCO2 /Air Heat Exchanger Technology
Evaluation

Fabrication of a Bench Scale Air/sC02 Heat
Exchanger

Bench Scale Evaluation of a Representative
Air/sCO2 Heat Exchanger

= Task 5.0 — Evaluation of Novel sC0O2
Absorption/Desorption Cycles

Physical Properties Testing

Dense Phase Separation Evaluation
Materials Compatability Review
Absorption/Desorption Cycle Evaluation
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Budget Breakdown

Participant Type Project Budget Cost Share POC
Southwest Research Institute® Not for Profit S  525,000.00 $ 50,000.00 Aaron McClung
Thar Energy LLC For Profit S 600,000.00 S 175,000.00 Lalit Chordia
Project Total S 1,125,000.00 S 225,000.00
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THANK YOU FOR YOUR ATTENTION




