Absorption/Desorption Based High Efficiency Supercritical Carbon Dioxide Power Cycles

DE-FE0025348 Kickoff Meeting

October 22, 2015

Aaron McClung, Ph.D.
Klaus Brun, Ph.D.
Southwest Research Institute

Marc Portnoff

Thar Energy L.L.C.

Outline

- Participants
- Project and Technical Overview
 - Fossil Based sCO2 Cycles
 - sCO2 "Boiler" Considerations
 - Absorption/Desorption Cycle
- Proposed Scope
 - Objectives
 - Work Breakdown
- Project Management

PROJECT PARTICIPANTS

Southwest Research Institute

- Independent, nonprofit applied research and development organization founded in 1947
- Eleven technical divisions
 - Aerospace Electronics, Systems Engineering & Training
 - Applied Physics
 - Applied Power
 - Automation & Data Systems
 - Chemistry & Chemical Engineering
 - Engine, Emissions & Vehicle Research
 - Fuels & Lubricants Research
 - Geosciences & Engineering
 - Mechanical Engineering
 - Signal Exploitation & Geolocation
 - Space Science & Engineering
- Total 2013 revenue of \$592 million
 - 38% Industry, 36% Govt., 26% Govt. Sub
 - \$6.7 million was reinvested for internal research and development
- Over 2,800 staff
 - 275 PhD's / 499 Master's / 762 Bachelor's

- Over 1,200 acres facility in San Antonio, Texas
 - 200+ buildings, 2.2 million sq. ft of laboratories & offices
 - Pressurized Closed Flow Loops
 - Subsea and High Altitude Test Chambers
 - Race Oval and Crash Test Track
 - Explosives and Ballistics Ranges
 - Radar and Antenna Ranges
 - Fire testing buildings
 - Turbomachinery labs

Benefiting government, industry and the public through innovative science and technology

Machinery Program

- Fluids & Machinery Engineering Department
 - Mechanical Engineering Division (18)
- Specialties
 - Turbomachinery component design and testing
 - Root cause failure analysis
 - Rotordynamic design/audit
 - Pipeline/plant simulation
 - CFD and FEA analysis
 - Test stand design
 - Performance testing

Thar companies:

Systems for fuel production, power generation and geothermal heating and cooling Supercritical fluid process design and toll extractions from organic feedstocks

Core competencies:

- 25+ years commercializing "Green" supercritical fluid technologies (SCF)
- Designer and developer of supercritical fluid processes, systems & major components
- Industrial scale 24/7/365 installations, world wide:
 - > Food
 - Chemicals
 - Nutraceutical
 - > Pharmaceutical
 - > Chemical
- Heat exchangers for high pressure, high temperature application

Recent DOE Programs

- CO2 Compression
 - CO2 Compressor, NETL, Q1-15
- sCO2 Cycles and Components
 - Sunshot Expander, NREL, Q4-15 (SwRI + Thar)
 - Oxyfuel, NETL, Q1-16 (SwRI + Thar)
 - sCO2 Recuperator, NETL, Q1-16 (Thar + SwRI)
 - sCO2 Heat Exchanger, NETL, Q1-16
 - sCO2 Utility Scale, NETL, Q1-16
 - sCO2 Heat Management Focus, ARPA-E, Q3-16
 - CSP sCO2 Seal Test, NREL, Q3-16
- Renewable Energy
 - Sunshot Combustor, NREL, Q4-15
 - Linear Motor Compressor, EERE, Q2-17
 - LNG Fracking, EERE, Q2-17

PROJECT AND TECHNOLOGY OVERVIEW

Project Objectives

- Identify technical challenges impacting the integration of fossil based thermal sources with highly recuperated closed Brayton sCO2 power cycles
- Evaluate the impact of boiler design and sCO2 cycle configuration on integrated plant performance, cost, and operability
- Evaluate technology readiness of the integrated system and identify specific technologies requiring development advance fossil based sCO2 cycles.

Why sCO2 Power Cycles?

- Thermal efficiencies approaching 50% at 700°C,
 65% at 1,200°C for the Recompression Cycle
- Offer +3 to +5 percentage points over supercritical steam for indirect coal fired applications
- High fluid densities lead to compact turbomachinery
- Efficient cycles require significant recuperation
- Compatible with dry cooling techniques

Representative Cycle Efficiencies

"Typical" sCO2 Cycle Conditions

Application	Organization	Motivation	Size [MWe]	Temperature [C]	Pressure [bar]
Nuclear	DOE-NE	Efficiency, Size	300 - 1000	400 - 800	350
Fossil Fuel	DOE-FE	Efficiency, Water Reduction	500 - 1000	550 - 1200	150 - 350
Concentrated Solar Power	DOE-EE	Efficiency, Size, Water Reduction	10, 100	500 - 1000	350
Shipboard Propulsion	DOE-NNSA	Size, Efficiency	10, 100	400 - 800	350
Shipboard House Power	ONR	Size, Efficiency	< 1, 1, 10	230 - 650	150 - 350
Waste Heat Recovery	DOE-EE ONR	Size, Efficiency, Simple Cycles	1, 10, 100	< 230; 230-650	15 - 350
Geothermal	DOE-EERE	Efficiency, Working fluid	1, 10, 50	100 - 300	150

Fossil Based sCO2 Power Cycles

Competition

Indirect: Supercritical Steam with CCSDirect: Natural Gas Combined Cycle

Advantages

- High power efficiencies at "Moderate" temperatures
- Oxy-combustion facilitates integrated carbon capture
- Compact turbomachinery lead to compact power blocks
- Partially offset by recuperation to achieve high cycle efficiencies

Challenges

- 250 C thermal input temperature widow (recompression cycle) is not ideal for combustion based systems
 - 400 C Combustor inlet for 650 C Turbine Inlet
 - 950 C Combustor inlet for 1200 C Turbine inlet
- Flue gas cleanup for direct fired systems
- Non-trivial efficiency losses for indirect cycles

Recompression Cycle

Nominal 10 MWe RCBC test facility

Integration Challenges

- Mismatched thermal input leads to inefficiencies in the boiler or heater
- Addressed by
 - Optimizing the power cycle to change thermal input characteristics
 - Adapting the thermal system to the power cycle
 - Recuperated thermal system
 - Direct fired configurations
- Impact of sCO2 interface heat exchanger design on system performance is unknown

Recompression Cycle

- Leverages recent SunShot and DOE-NE cycles development
- High efficiencies possible for the power block
 - 60% at 1100C
- High degree of recuperation drives a narrow thermal input window (~250C) and high mass flow requirements
- Combustor inlet temperatures
 - 400 C Combustor inlet for 650
 C Turbine Inlet
 - 950 C Combustor inlet for 1200
 C Turbine inlet

Partial Condensation Cycle

- Trans-critical cycle
- Optimization schedules the vapor phase compression, cooling for liquefaction, and liquid pumping to reduce compression power requirements

Cycle Comparison

	Single	Single	Recompression	Recompression			
	Recouperator	Recouperator	•	•			
	Condensation	Condensation					
Net fuel to bus bar plant	54.03%	51.60%	56.73%	53.44%			
efficiency							
Total Recouperation (kW)	989.91	1078.16	1163.44	1205.34			
HE Duty per Net Power	2.48	3.21	4.34	6.55			
Ratio (kW/kW)							
Power per Mass Flow Ratio	399.06	335.38	268.08	183.92			
(kJ/kg)							
Combustor Inlet Temp. (°C)	755.18	808.60	918.16	994.37			
Combustor Inlet Pres. (bar)	300.00	200.00	300.00	200.00			
** Cycles evaluated at 1200°C Turbine Inlet Temperature and 1 kg/s mass flow							

sCO2 "Boiler"

- sCO2 Recuperators are being actively developed to address TRL for the power cycle
- Air fired sCO2 heaters are not an off the shelf component for integrated systems
- Challenges
 - Dis-similar fluid densities, heat capacities
 - High dP between air and sCO2 at high temperatures
 - Minimizing air side pressure drop with high volumetric flows
 - Managing air side fouling

Plate and Fin Heater Concept

- Easy to manufacture.
- Integrated manifold can handle CO2 pressure.
- Combustion gas side pressure drop is low.
- Staggered fin increases heat transfer.
- Lower probability of plugging on combustion gas side.

Absorption/Desorption

- Utilize Absorption/Desorption of a binary mixture to minimize compression work
 - CO2 (R744)
 - Acetone or Ethanol
- Previously evaluated for increasing Coefficient of Power for refrigeration cycles
- Initial Aspen models indicate a 60% reduction in compression work is possible
 - Provides a 5% to 10% gain in cycle thermal efficiency

Challenges

- Verification of fluid properties at conditions of interest
 - Test for a dense phase compressibility doublet
- Adaptation of sCO2 cycles
 - Evaluate Absorption/Desorption process and applicable range of temperatures and pressures
- Optimization of the cycle

PROPOSED SCOPE

Project Objectives

- Identify technical challenges impacting the integration of fossil based thermal sources with highly recuperated closed Brayton sCO2 power cycles
- Evaluate the impact of boiler design and sCO2 cycle configuration on integrated plant performance, cost, and operability
- Evaluate technology readiness of the integrated system and identify specific technologies requiring development advance fossil based sCO2 cycles.

SOPO Tasks

- Task 1.0 Project Management and Planning
- Task 2.0 Evaluation of Fossil Fired sCO2 Power Plants
- Task 3.0 Critical Component and Technology Identification for sCO2 based Power Plants
- Task 4.0 Component and Boiler Technology Assessment
- Task 5.0 Evaluation of Novel sCO2 Absorption/Desorption Cycles

Task 2.0 – Evaluation of Fossil Fired sCO2 Power Plants

- Evaluate sCO2 cycle configurations to establish operating requirements for an indirect fossil based power plant
 - Recompression and Partial Condensation cycles
 - Review work of Angelino and Dostal for additional cycle configurations of interest
- Baseline component performance requirements for thermal sub-systems

Task 3.0 – Critical Component and Technology Identification for sCO2 based Power Plants

- Identify critical components and determine their impact on a fossil based sCO2 plant using
 - Design space exploration
 - Sensitivity studies of the integrated power plant
- Down select and optimize cycle configurations for overall efficiency
 - Focus is on indirect cycles

Task 4.0 – Component and Boiler Technology Assessment

- Assess boiler integration issues for sCO2 power cycles
 - Technical gap assessment to identify of critical components and development needs
 - Evaluate feasibility of existing boiler configurations to meet needs of sCO2 cycles
 - Evaluate the sCO2/Air heat exchanger
 - Analysis, prototyping, and bench scale evaluation

Task 5.0 – Evaluation of Novel sCO2 Absorption/Desorption Cycles

- Evaluate the application of Absorption/Desorption to power generation
 - Utilize absorption of CO2 into Acetone or Ethanol to minimize compression work
- Fluid properties verification at conditions at high
 P and T than is available in literature
 - Physical properties testing
 - Desorption and separation
- Materials compatibility review
- Cycle definition, evaluation, and optimization

PROGRAM MANAGEMENT

Schedule

Budget Breakdown

Participant	Туре	Type Project Budget		Cost Share		POC
Southwest Research Institute®	Not for Profit	\$	525,000.00	\$	50,000.00	Aaron McClung
Thar Energy LLC	For Profit	\$	600,000.00	\$	175,000.00	Lalit Chordia
Project Total		\$	1,125,000.00	\$	225,000.00	

THANK YOU FOR YOUR ATTENTION

