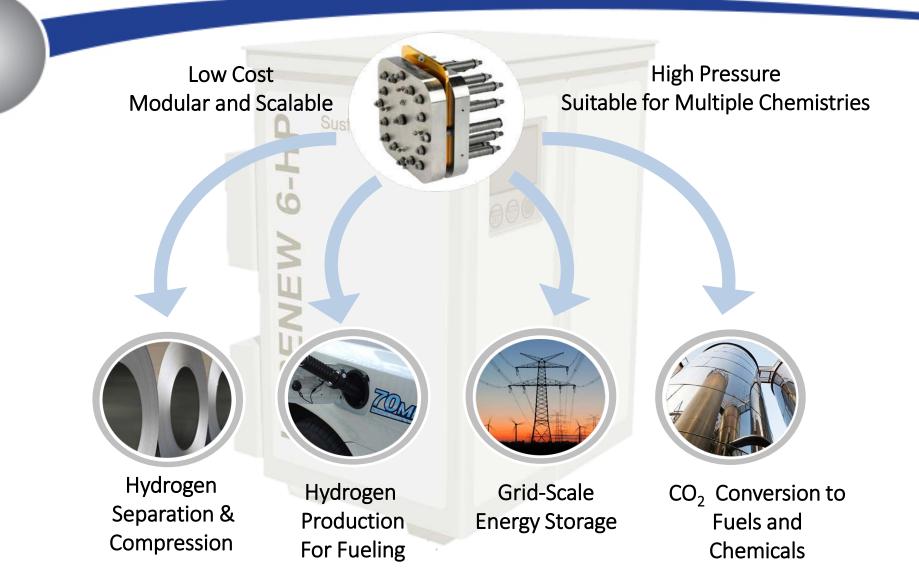
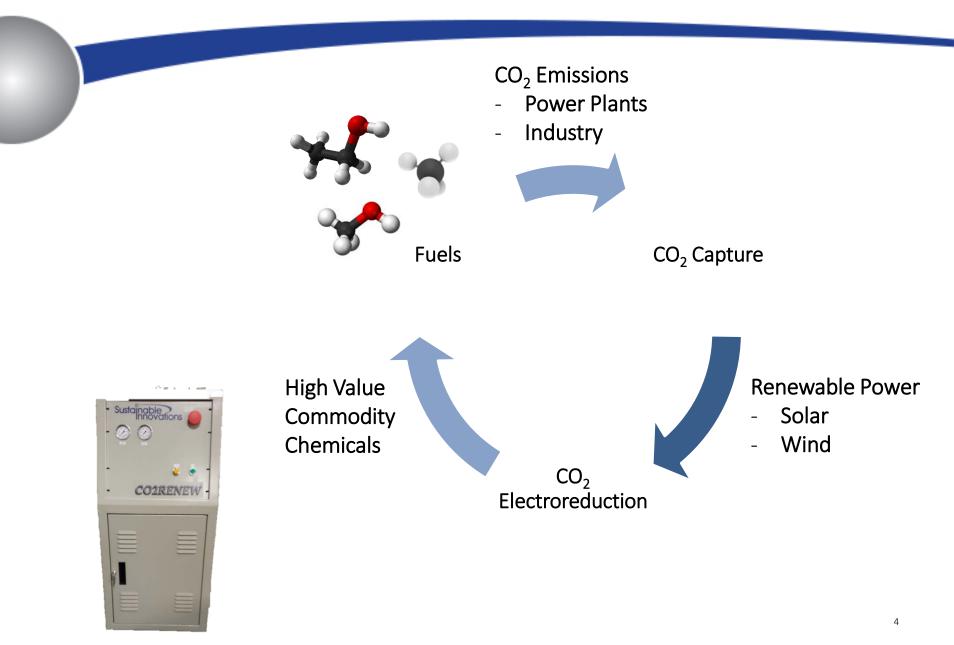


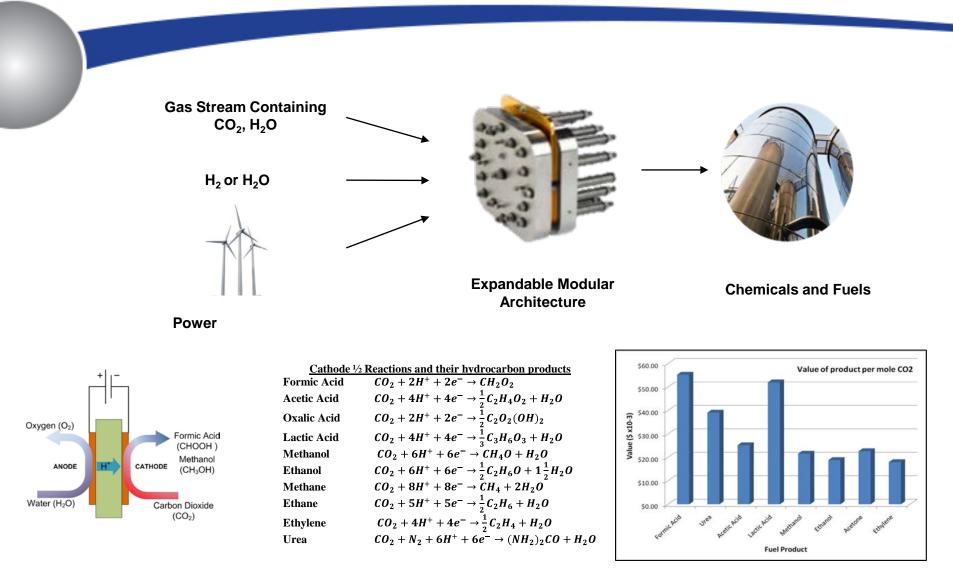
Electrochemical Conversion of CO₂ to Fuels for Power-to-Gas Energy Storage

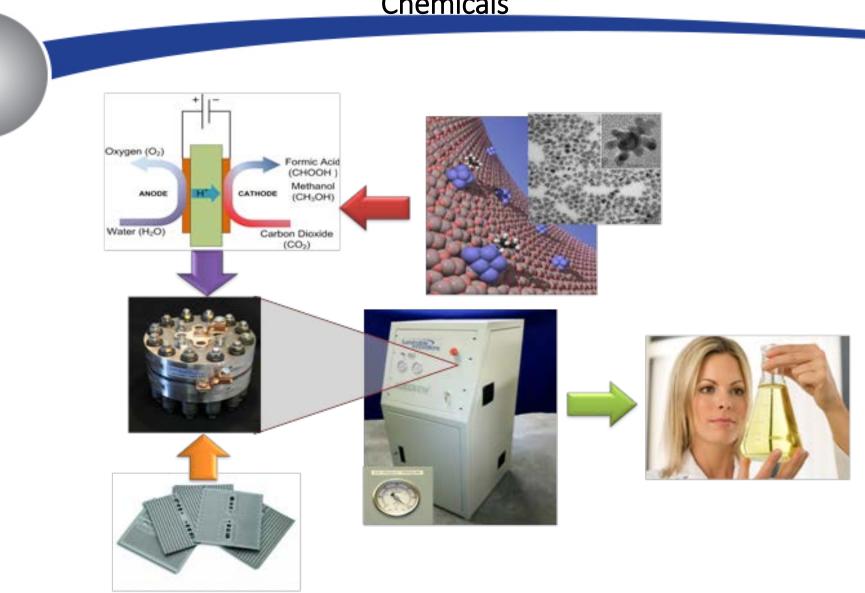

Phase I Kickoff Meeting August 30, 2016

Agenda


Relation to Sustainable Innovations Technology

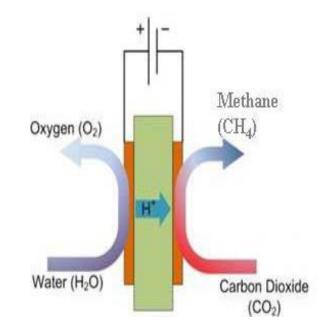
- Related Applications
- Specific Challenges of DOE Application
- Current State of Development
- Work Plan for the Phase I Project
- Discussion of System Requirements


Sustainable Innovations Common PEM Platform Addresses Multiple Markets


Carbon Neutral Fuel Cycle

Related Activity – CO2RENEW[™] For Generation of Fuels and Commodity Chemicals

Related Activity – CO2RENEW[™] For Generation of Fuels and Commodity Chemicals



Project Objective

• Electroreduction of CO₂ to Methane

$CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$

- Integration of High-Temperature MEAs
 - PBI, Advent TPS
- Design Methanation Cell Capable of 40 g CH_4 /Day
 - Performance Validation with Pure and Dilute CO₂
 Streams
- Design 5-Cell Stack Prototype for 0.2 kg CH₄/day
- Ongoing Techno-Economic Modeling

DOE SBIR Phase I Project

Work Plan

Task 1: Advance and Further Develop Integrated Methanation Concept via Laboratory Testing

Task 2: Design 0.2 kg/day Methanation Cell Stack

Task 3: Build and Test Prototype Methanation Cell

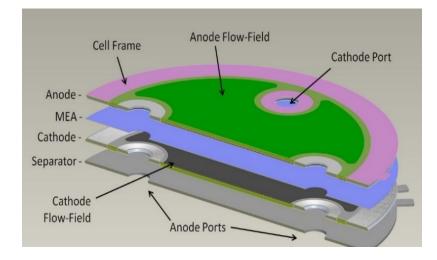
Task 4: Design Prototype EMG System with a Capacity of up to 0.2 kg/day

Task 5: Fabricate and Test Prototype EMG at a Capacity up to 0.2 kg/day

Task 6: Program Management and Reporting

Task 1: Advance and Further Develop Integrated Methanation Concept via Laboratory Testing

- Characterization of PFSA Membrane at Temperatures up to 80°C
- Integration and Characterization of High Temperature Membrane at Temperatures up to 200°C
- Single Cell Test Article
- 81.6 cm² Active Area


Parameter	Anticipated Testing Range	Unit
Current Density	200-1000	mA/cm ²
Cathode Temperature	50-200	°C
Cathode Pressure	0-500	psig
Electrolyte	Nafion, PBI, Advent TPS	

Work Product: Fundamental Understanding of Design Requirements for a 0.2 kg/day Methanation Cell Through Performance Testing and Parametric Mapping With a Goal of Conversion of a 100% CO₂ Stream to CH_4 at a Faradaic Efficiency of >80%

Task 2: Design 0.2 kg/day Methanation Cell Stack

- Optimization of Pre-Prototype Embodiments Incorporated Into Cell Stack
- Stack Size 1 to 5 Cells
- 81.6 cm² Active Area

Work Product: Complete Design Package for 0.2 kg/day Methanation Cell Stack

Task 3: Build and Test Prototype Methanation Cell

- Single Cell 40 g CH_4 /Day Parametric Evaluation
 - 200 Hour Durability
- Three Cell Stack Parametric Evaluation
 - Ascertain Issues From Cell Stacking
- Five Cell Stack Parametric Evaluation
 - 0.2 kg CH₄/Day
 - 200 Hour Durability
- Concentrated and Dilute CO₂ Streams

Work Product: Prototype 0.2 kg/day Methanation Cell Stack Evaluated With Concentrated CO_2 and Dilute CO_2 as Found in Flue Gas Chemistries

Task 4: Design Prototype EMG System with a Capacity of up to 0.2 kg/day

- Design 0.2 kg CH₄/Day Prototype Automated System
 - CO₂ Regulation
 - Temperature/Pressure Monitoring and Control
 - Stack Current Monitoring and Control
- Generate System P&ID
- Conduct Design Review and FMEA

Work Product: Prototype Design Package for 0.2 kg/day Electrochemical Methane Generator

Task 5: Fabricate and Test Prototype EMG at a Capacity up to 0.2 kg/day

- Assemble 0.2 kg CH_4 /Day Automated Prototype
- Parametric Evaluation Based on Expected Effluent Streams
- 200 Hour Durability Evaluation of System

Work Product: 0.2 kg/day Electrochemical Methane Generator and Associated Parametric, Durability and Techno-Economic Data

Task 6: Program Management and Reporting

- Milestone 1 (End of Month 4): Performance Evaluation and Durability of 5-Cell Stack Complete
- Milestone 2 (End of Month 9): Performance Evaluation and Durability of 0.2 kg CH₄/Day Prototype Complete

	Months								
	1	2	3	4	5	6	7	8	9
Task 1: Advance and Further Develop Integrated Methanation Concept via Laboratory Testing									
Task 2: Design 0.2 kg/ day Methanation Cell Stack									
Task 3: Build and Test Prototype Methanation Cell									
Task 4: Design Prototype EMG System with a Capacity of Up to 0.2 kg day									
Task 5: Fabricate and Test Prototype EMG at a Capacity up to 0.2 kg/ day									
Task 6: Program Management and Reporting									

Work Product: Achieve Program Objectives on Time and Within Budget

Contact Information

Dr. Trent Molter President & CEO Sustainable Innovations, Inc. (860) 652-9690 trent.molter@sustainableinnov.com

www.sustainableinnov.com