OPUS12

REVERSE COMBUSTION

KENDRA KUHL, CTO

Prepared for DOE 18f Webinar

Team: Uniquely positioned to bring this product to market.

NICHOLAS FLANDERS, CEO

MS E-IPER, Stanford Work Experience: COO/CFO Levo McKinsey CleanTech practice

DR. KENDRA KUHL, CTO

PhD in Chemistry, Stanford Post doc, SLAC Research: Transition metal catalyzed CO₂ electroreduction, reactor design

DR. ETOSHA CAVE, CSO

PhD in Mechanical Eng, Stanford Research: Modified gold catalysts for CO₂ electroreduction, reactor design

SICHAO MA, SENIOR CHEMIST

PhD in Chemistry, University of Illinois Urbana-Champaign Research: ECO2R ethylene catalysis, reactor design

FOUNDING TEAM

GEORGE LEONARD, SENIOR CHEMIST

BS Chemistry, Carnegie Mellon Work Experience: CO₂ catalysis, reactor design - Liquid Light

DANIEL DIAZ, CHEMIST

MS Material Science, University of Michigan Work Experience: Silicium

ANNIE ZENG, ENGINEER

BS Mechanical Engineering Olin College of Engineering Work Experience: Alteros

Traction: Scaling up our record-setting prototype at Lawrence Berkeley National Lab

Our solution: a platform technology that recycles CO_2 back into chemicals and fuels

Electrochemical CO₂ conversion (ECO2R): a \$300 billion global market

The global market for our technology is huge and diversified: nearly \$300 billion and growing at over 4% per year.

Our team has demonstrated the electrochemical conversion of CO₂ into 16 different products; the top nine by market value are illustrated here **PRODUCT** \$BILLION, GLOBAL SALES

TOTAL PRODUCTS: \$300 BILLION

We are the first group in the world to integrate CO_2 -converting catalysts into a PEM electrolyzer.

Image: Proton OnSite M Series 1 MW PEM water electrolyzer

By integrating into a PEM electrolyzer, we capture all of the benefits of an existing industrial reactor design, while significantly reducing scale-up risk

Advantages of PEM reactor architecture

- **Commercial readiness** deployed around the world for decades
- **Fast ramp times** enables use of intermittent low-cost electricity (modern systems can integrate directly with a wind turbine)
- Low capex, thanks to years of commercial development and mild operating conditions
- **Modularity and scalability** –allows for integration with CO₂ sources of diverse volumes
- **High current density**, leading to a small footprint
- **Operational simplicity** no need for specialized operators on site

We are developing a flue gas simulation system, which will enable us to test our system with realistic feedstock compositions

Entire setup contained inside large vented enclosure.

TOPIC FOR SBIR PHASE 1

Gas mixtures examined

Original Ranges Proposes

Gas tested	Simulated flue gas		Individual gas testing	
	Coal power	CCGT	Concentrati on Range	Balance
CO2	12	7	5-100%	N ₂
СО	50	300	500 ppm- 5%	CO ₂
02	4	5	1-10%	CO ₂
SO ₂	400	n/a	25-500 ppm	CO ₂
NO _x	400	70	25-500 ppm	CO ₂

Typical Flue Gas Mix Shared by Dave Lang

Dry Flue Gas	after Combustion (1)	after NOx Control (2)	after PM & Hg Control (3)	after SOx Control (4)		
	Volume% (unless otherwise noted)					
CO ₂	15.9	15.9	15.9	16.0		
N ₂ +Ar	81.2	81.2	81.2	81.2		
O_2^d	2.7	2.7	2.7	2.8		
NOx ^e	0.04	53 ppmv	53 ppmv	53 ppmv		
SOx ^f	0.23	0.23	0.23	46 ppmv		
Moisture	8.7	8.7	8.7	15.2		
$\mathbf{P}\mathbf{M}^{g}$	7,300 ppmw	7,300 ppmw	15 ppmw	15 ppmw		
Hg	13 ppbw	13 ppbw	1.3 ppbw	1.3 ppbw		

Project Timeline IV. Performance Schedule

IV.1 Workplan Overview

Project Plan Tasks

Equipment setup and calibration Performance testing – various gas inputs:

- Simulated flue gas mixtures
- Carbon dioxide
- Carbon monoxide
- Oxygen
- Sulfur dioxide
- Nitrogen oxides

In situ catalyst reactivation testing System modeling

Table 4.1 Gantt chart listing tasks and timeline of completion for the course of the 9-month project (38 weeks).

Project Goals

- Preliminary determination of CO₂ purity needed to maintain reactor performance
- Assess what purification technologies are needed to achieve the necessary purity
- Develop approximate cost model for cost of getting CO₂ from a coal or natural gas power plant