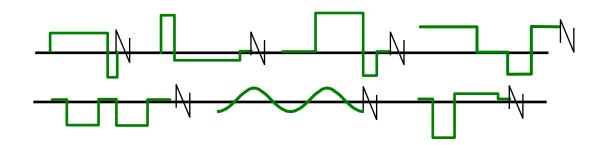


Micro-Electrocatalytic Upgrading of Carbon **Dioxide to Hydrocarbons**

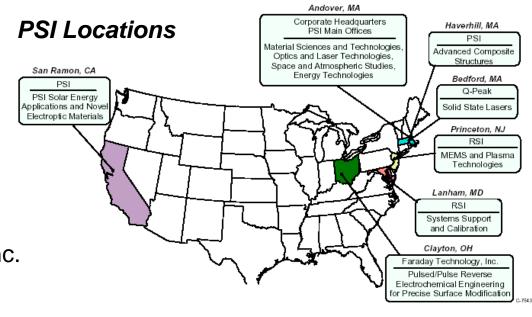
DOE Phase I SBIR FY2016 Topic 18F Webinar

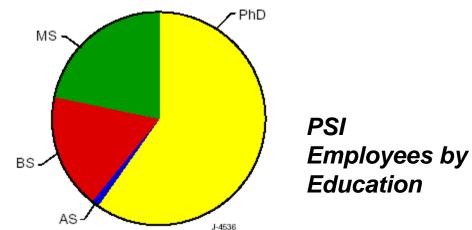
PI: Brian Skinn, Faraday Technology, Inc.

TPOC: José Figueroa


Contract No. DE-SC0015812

Overview

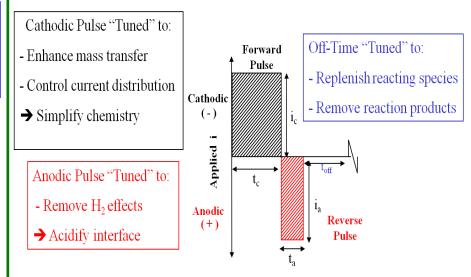

- Faraday Company Introduction
- Program Overview
- Prior/Ongoing Work
- Program Description
- Activities to Date


Introduction to Faraday Technology, Inc.

FARADAY TECHNOLOGY, INC.

- Electrochemical engineering processes and technologies – founded 1991
 - ~29 Issued Patents and ~15 Pending Patents in this area
 - www.FaradayTechnology.com
- Subsidiary of Physical Sciences, Inc.
 (Boston, MA) acquired 2008
 - www.psicorp.com
- Collective employment ~140;
 ~90 MS/PhDs
- Annual revenue of ~ \$40 million
- ~ 100 patents company-wide in numerous fields

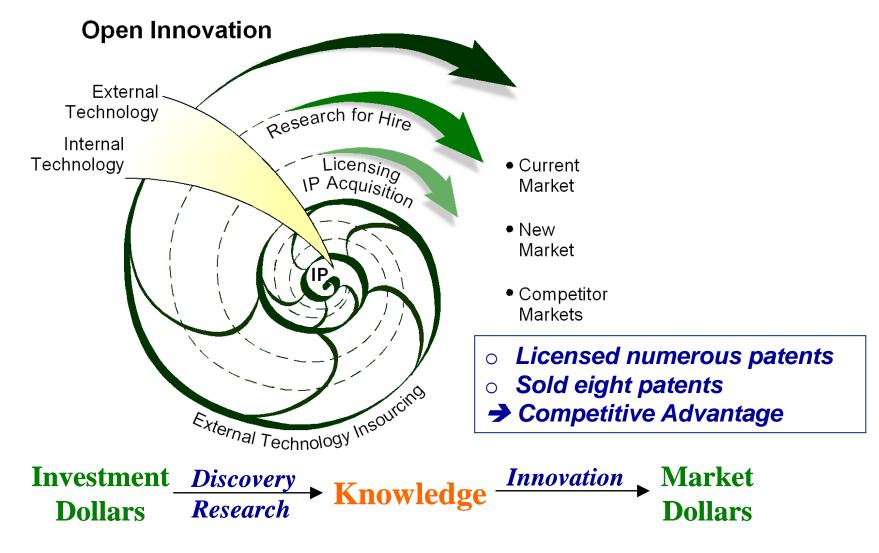
VISION - TECHNOLOGY PLATFORM


"...to be known as the company that changed the focus of electrochemical engineering from the art of complex chemistries to the science of pulse/pulse reverse electric fields..."

Electrochemical Machining, Polishing, Deburring, Through-Mask_Etching

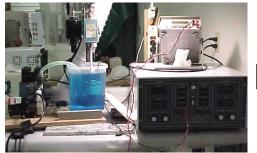
Off-Time "Tuned" to: Anodic Anodic Pulse "Tuned" to: - Heat dissipation (+)Forward Control current distribution - Replenish reacting species pulse Eliminates need for - Remove reaction products viscous, low water content electrolytes Time off Cathodic Pulse "Tuned" to: - Reduce oxide/depassivate surface → Eliminate need for HF Cathodic Reverse pulse

- 2008 Blum Scientific Achievement award for Pulse Reverse Surface Finishing
- o 2016 R&D 100 Finalist for Nb ElectroPolishing


Electrodeposition/Plating

- o 2011 R&D 100 for Co-Mn Alloy Plating
- 2013 Presidential Green Chemistry Challenge award for Cr⁺³ Plating

OPEN INNOVATION



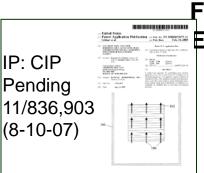
FARADAY'S TECHNOLOGY DEVELOPMENT

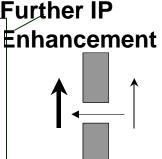
Technology development begins conceptually and is demonstrated at the bench-scale and developed through α/β -scale validation.

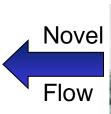
Technology/IP Alignment

Cell Design

Pilot-Scale Validation

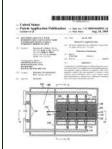



District States

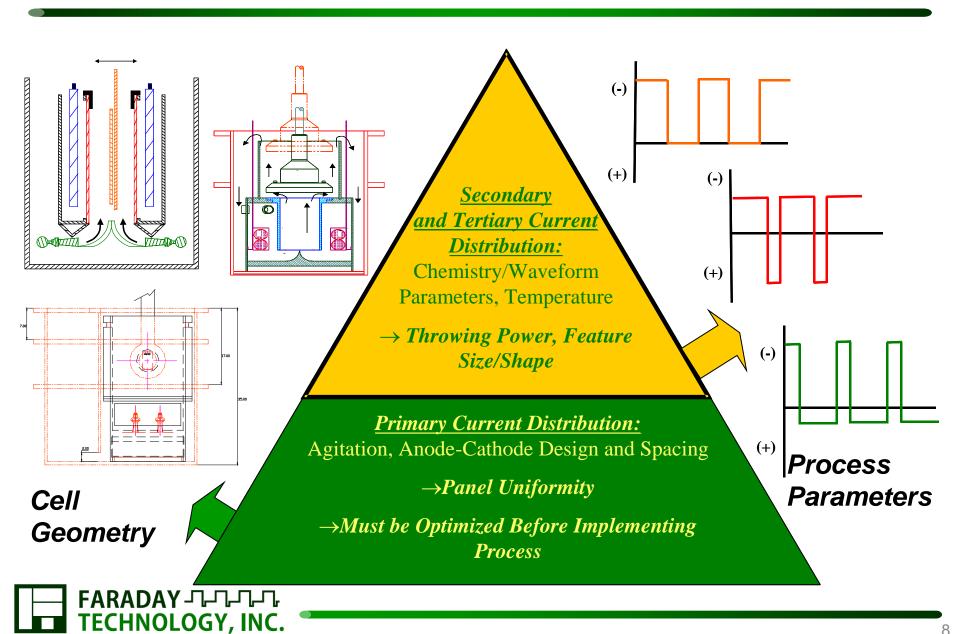

| District States | District | Distric

IP: Issued 7,553,401 (6-30-09)

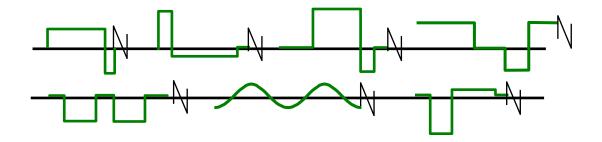
Bench-Top Feasibility



Production-Scale Validation



IP: Pending 12/431,030 (4-28-09)



APPARATUS – PROCESS

Program Overview

Period of Performance: 13 Jun 2016 – 12 Mar 2017

Problem/Opportunity and Program Objective

Problem/Opportunity

 Conversion of carbon dioxide to high-value products using low-quality heat sources requires development of efficient conversion methods capable of high rates.

Objective

- The overall program goal is to establish the technical feasibility and scalability of FARADAYIC® techniques for electroreactor component and copper electrocatalyst fabrication, enabling efficient, high-rate conversion of carbon dioxide to hydrocarbons (e.g., ethylene)
 - Maximize product generation
 - Minimize H₂/CO/formate fractions
 - Minimize operating overpotential

Technical Approach

- Stackable-plate electroreactor for $CO_2 \rightarrow$ hydrocarbon (HC) conversion
- Novel activated-copper cathodic catalyst
- Commercial mixed-oxide anodic catalyst
- Exploit scalable, low-cost electrochemical fabrication methods
 - Electrodeposition & electrochemical through-mask etching

Project Team Members

Faraday

Brian Skinn (PI)

DOE Personnel

- TPOC: José Figueroa

jose.figueroa@netl.doe.gov

412.386.4966

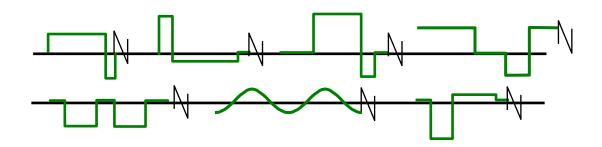
- Admin Contact: Moriam Olowo

moriam.olowo@science.doe.gov

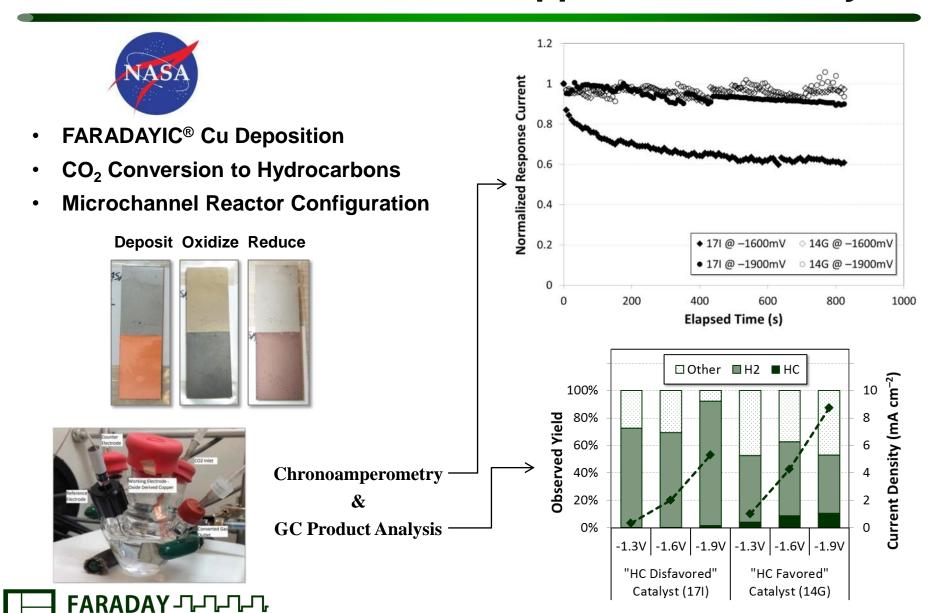
630.252.2121

Massachusetts Institute of Technology

Fikile Brushett


• Ph: 617.324.7400

• Email: brushett@mit.edu



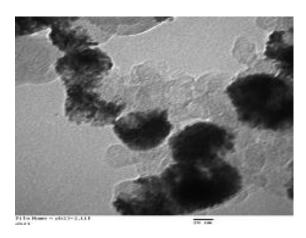
Prior/Ongoing Work

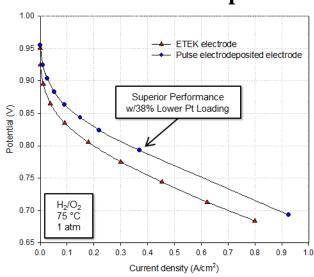
Prior Work: FARADAYIC® Copper ElectroCatalysis

TECHNOLOGY, INC.

Prior Work: FARADAYIC® ElectroCatalyzation

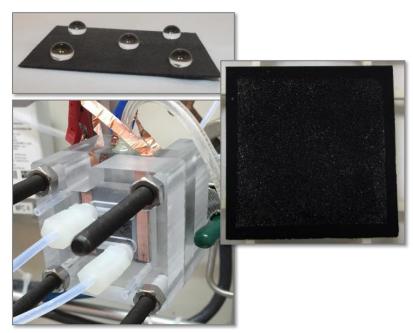
- Low-loading deposition of Pt fuel cell catalyst
- Beta-scale batch system (NSF)
- Pilot-scale reel-to-reel system (OH)

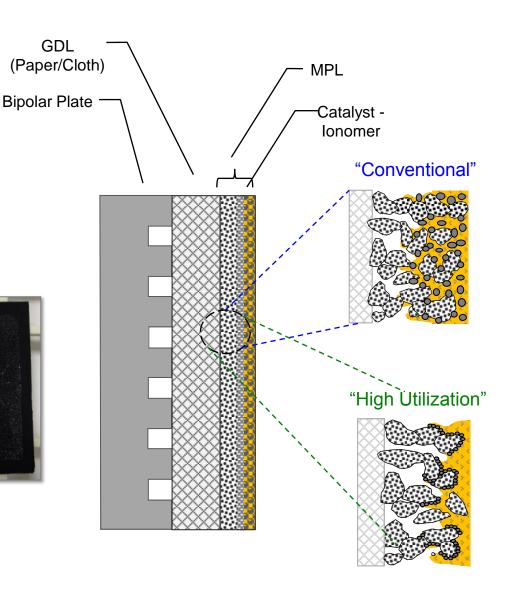

Batch System Continuous Reel-to-Reel


U.S. Patent 6,080,504 Granted

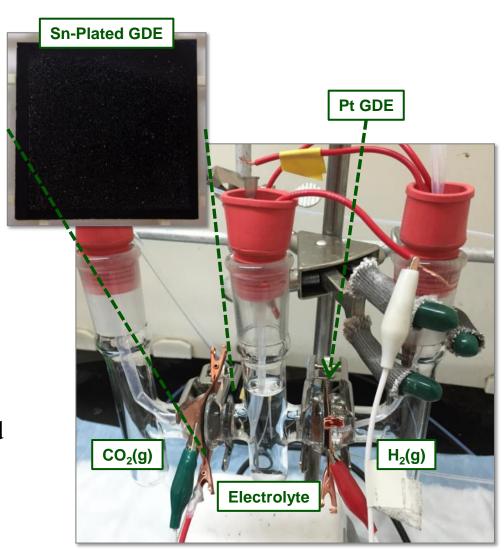
TEM of Pt on Carbon

Performance Comparison

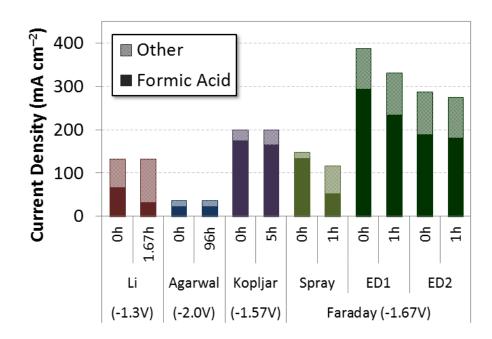



Ongoing Work: FARADAYIC® Tin Electrocatalysis

- FARADAYIC® Sn Deposition
- CO₂ Conversion to Formate
- GDE-Based Electroreactor



Ongoing Work: FARADAYIC® Tin Electrocatalysis


- Perform constant-potential electrolysis and measure:
 - Total response current
 - Formic acid production
 UV absorbance at 202 nm
- CO₂ flush gas behind GDE
- $Na_2CO_3 + Na_2SO_4$ electrolyte (pH ~ 10)
- H₂/Pt GDE counterelectrode used to reduce total cell potential

Ongoing Work: FARADAYIC® Tin Electrocatalysis

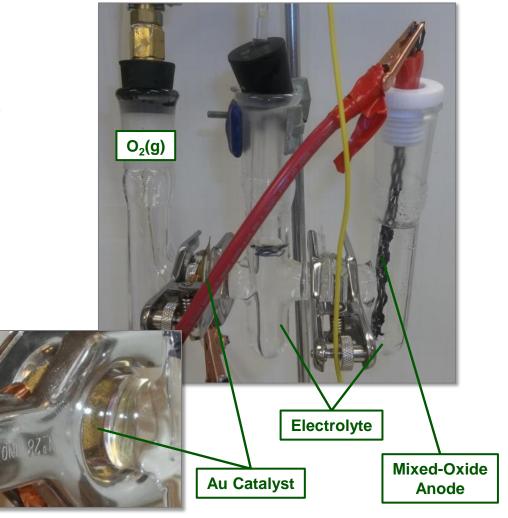
- Preliminary FARADAYIC®
 ElectroDeposition (ED) samples show significantly increased total and FA-efficient current densities relative to conventional spray-coating method and literature data
 - $-j_{\text{total}} \ge 275 \text{ mA cm}^{-2}$
 - $-\%FA \ge 70\%$
- Favorable short-term catalyst durability
- Significant potential for optimization
 - Ionomer loading
 - Sn electrocatalyst loading
 - Sn electrocatalyst ED parameters
 - GDE (GDL/MPL) parameters

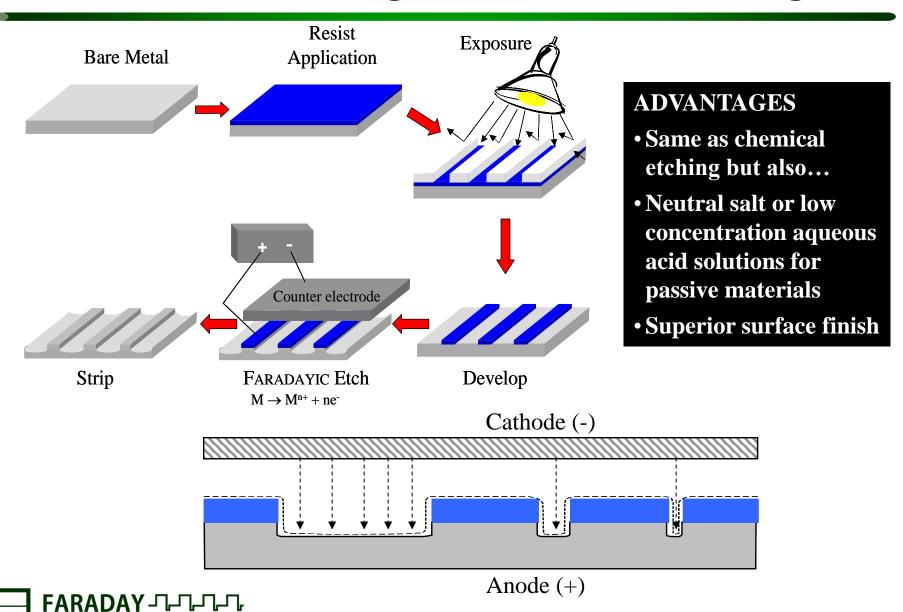
(Half-cell potentials vs SHE)

Li and Oloman. *J Appl Electrochem* **35**: 955, 2005.

Agarwal et al. ChemSusChem 4: 1301, 2011.

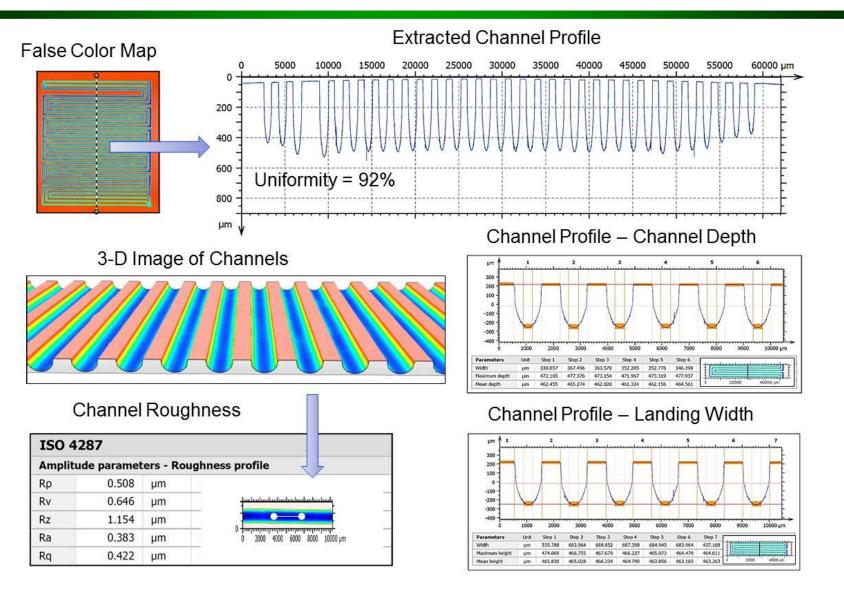
Kopljgar et al. *J Appl Electrochem* **44**: 1107, 2014.


Ongoing Work: Electrochemical Peroxide Generation


• Goal: On-demand peroxide generation for disinfection of crew contact surfaces

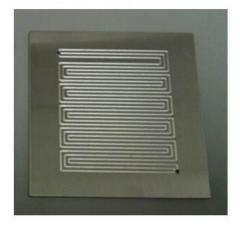
Approach:

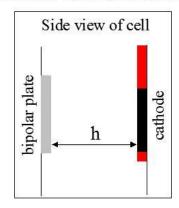
Au or C cathodic electrocatalyst Commercial mixed oxide anode



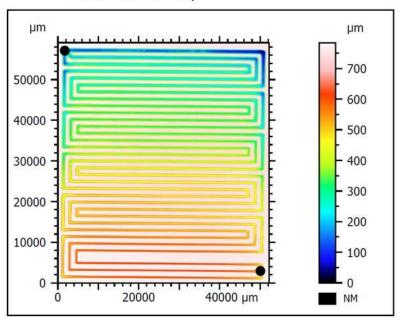
Prior Work: Through Mask ElectroEtching

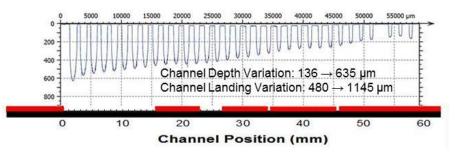
TECHNOLOGY, INC.


Prior Work: ElectroEtching Fuel Cell Bipolar Plates

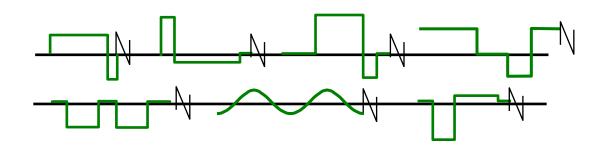


Prior Work: ElectroEtching Fuel Cell Bipolar Plates


430 Stainless Steel deep outlet/shallow inlet


Counter electrode shielding adjusted to control uniformity

False Color Map



Extracted Channel Profile deep outlet/shallow inlet

Program Description

Objective of Phase I

The Phase I objective is to demonstrate the potential for economical, scalable fabrication of stackable plate microchannel reactors exploiting activated copper electrocatalyst layers for CO_2 reduction to hydrocarbons.

The questions to be answered in the Phase I program are:

- 1. Can the potential for further *enhancement in the hydrocarbon selectivity* of activated copper electrocatalysts for CO₂ reduction be demonstrated?
- 2. Can a *state-of-the-art wet ionic liquid electrolyte* system be identified that shows potential to facilitate *enhanced hydrocarbon selectivity* in the CO₂ electroreduction system?
- 3. Can the potential be demonstrated for a microreactor stack system to *provide CO*₂ *conversion performance and economical capability* suitable for industrial-scale carbon emissions management?

Phase I Technical Approach

- For the Phase I program **Faraday** will:
 - Electrodeposit and thermally activate copper catalyst films
 - Revise/update thermal/electric/economic analysis (TEA)
 - Participate in ionic liquid evaluation/down-selection
- For the Phase I program **MIT** will:
 - Perform materials analysis of catalyst films
 - Perform electrocatalytic/electroanalytical tests on catalyst films
 - Participate in ionic liquid evaluation/down-selection

Program Tasks

- Kickoff Meetings
- Task 1: Copper Electrocatalyst Fabrication
- Task 2: Electrocatalysis Performance Evaluation
- Task 3: Electrocatalyst Materials Analysis
- Task 4: Ionic Liquid Selection/Evaluation
- Task 5: Techno-Economic Analysis
- Task 6: Reporting and Program Management

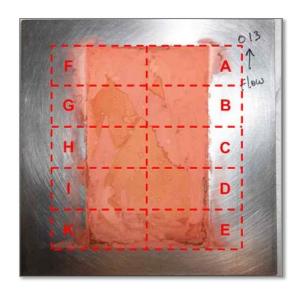
Task: Kickoff Meeting(s)

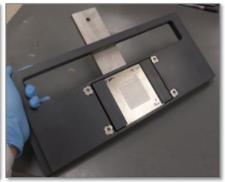
Faraday & DOE TPOC

- Engage TPOC
- Identify DOE priorities
- Held 3 Aug 2016
- Poster presented at DOE NETL CCTP
 2016 Meeting

Faraday & MIT

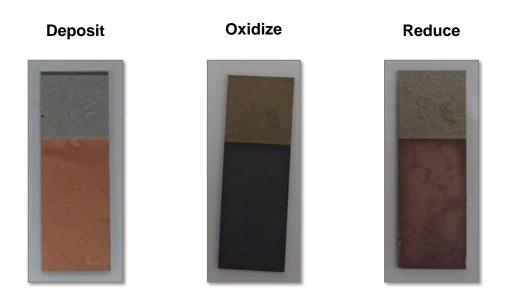
- Review program goals
- Identify / discuss milestones and completion targets
- Synchronize work plans
- Held 30 Jun 2016




Task 1: Copper Electrocatalyst Fabrication

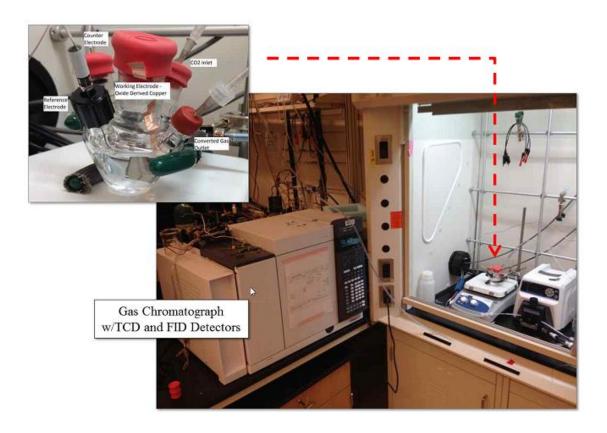
- Re-use NASA apparatus
- Plate on $4'' \times 4''$ SS304 panels
- Section panels into coupons
- Activate Cu by thermal oxidation & electrochemical reduction

Li and Kanan. *J Am Chem Soc* **134**: 7231, 2012



Task 1: Copper Electrocatalyst Fabrication

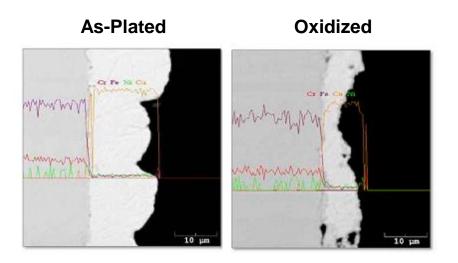
- FARADAYIC® ElectroDeposition Cell re-commissioned
- Three panels plated & sectioned into coupons
 - Identical waveform, different deposition durations (Cu film thicknesses)
- First set of coupons has been activated using best-performing protocol from NASA program
 - Twelve coupons (six as-plated, six activated) are in transit to MIT for testing



(1mm × 2mm plated area)

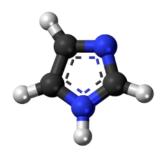
Task 2: Electrocatalysis Performance Evaluation

- Electroanalysis (CV, CA, etc.)
- GC assay of product gases
- UV/Vis analysis of formate (if formation suspected)


Task 3: Electrocatalyst Materials Analysis

- XRD Cu / Cu₂O / CuO content of films
- SEM/EDS Morphology and composition

12000 54% CuO 10000 46% Cu₂O 8000 Intensity (A.U.) 6000 CuO (002) 4000 CuO (202) CuO (110) 2000 80 20 50 60 70 30 Degrees (20)


XRD

SEM/EDS

Task 4: Ionic Liquid Selection/Evaluation

- Imidazolium family selected for Phase I experimentation
- Key properties include:
 - *Physical*: Rheology, CO₂ solubility, HC solubility
 - (*Electro*)*chemical*: Stability, Potential window

- Preliminary research on other IL families
 - Pyridinium
 - Guanidinium
 - Others

Task 5: Techno-Economic Analysis

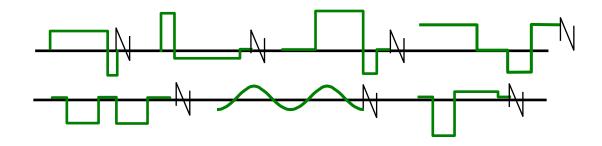
- Spreadsheet model for power, material, etc. inputs
 - Estimate stack performance, footprint, etc

	A	В	С
1			
2	Assumed Overpotential Required:	0.5∨	
3	Assumed Current Density	2mA	/cm^2 active area
4	Thermodynamic Potential Limit:	1.06∨	
5	Electrons transferred per CO2 converted:	8e/C	O2
6	Coulombs to convert basis:	222.4559674C/s	
7	Power Required	347.0313091W	
8	Energy Consumed	347.0313091 J/s	
9	Energy Consumed	29983.5051kJ/d	day
10	Energy Consumed	8.328751418kW	h/day
11	Solar Panel Area Needed	17.35156545m^:	2
12	Active Area of Catalyst	11.12279837m^:	2
13	Est'd active channel wall part-perimeter	3.2 mm	
14	Total channel arc length required	3/175.87//9m	

Spreadsheet CapEx / OpEx model

Production Scales	EA/pCP	LRIP	MRCP	
	OpEx			
	Part Geometry & Preparation			
Plates per Panel Row	3	4	4	
Rows of Plates Per Panel	3	5	5	
Panel Size	15"x15"	18"x24"	18"x24"	
Stock Material Size	18"x18"	24"x24"	24"x24"	
Metal cost per stock sheet	\$38.97	\$121.40	\$121.40	
Panels per sheet	1	1	1	
Pre-Etch cuts per panel	2	1	1	
Post-Etch cuts per panel	16	29	29	

OpEx Outputs	
Per-Plate Materials	SYCA
Per-Plate Active Labor	50.34
Per-Plate Idle Labor	plants
Per-Plate Shipping	51.0
Per-Plate Electricity	\$2.04
Per-Plate Total	gns.se


CapEx Outputs	
Rectification	\$190,460
Tank(s) / Fixturing	540,000

Task 6: Reporting and Program Management

- Centered on the management of the project to ensure milestones and reporting requirements are met
- Contractual reporting requirements
 - Final report due 26 Mar 2017 (~2 weeks after program end)
- Faraday will convene periodic internal review meetings to assess program progress toward milestones/objectives
- Faraday will continue telephone/WebEx briefings with MIT partner and/or DOE program/technical staff

Questions/Comments

