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— Distributed Health and Condition Monitoring
* |Information Measures

— Entropy/Information

— General information measures
e |nformation Structure of Systems

— Properties of information

— System decomposition

— Computation of information measures

— Detecting changes in system structure
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Network provides infrastructure for
health and condition monitoring,
dynamic configuration of sensor assets,
and construction of virtual agents

Agents are an integral
part of sensor network,
both producing and
consuming information

Advanced nonlinear models and
information fusion algorithms
imbue system with capability to
detect incipient faults

SUBSYSTEM/
COMPONENT
LEVEL FUSION

Production Systems

Nodes can function as
hubs, routes or relays

. SYSTEM LEVEL
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Elements of the network can
reconfigure the network in response to
changing operating conditions, sensor

failure or equipment faults
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Information Measures
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* Information is the amount of surprise
contained in the data;

— Data that tells you what you already know is not
informative,

— Not all data is created equal.

e The fundamental measure of information is
Shannon entropy is
— ) p(x)log,p(=

reX

where X € X is a discrete R.V., X' is a finite
set known as the alphabet, and »(z) = Pr{X =z},
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* For a pair of discrete R.Vs (X,Y) with joint and
conditional distributions p(x,y) and p(x|y), the joint and
conditional entropies are, respectively:

- > ) p(x,y)log, p(x, y)

reEX yey

H(X|Y) == > p(z,y)log, p(z|y)

rEX yey

 The relationship between these R.V.s is captured by

Mutual Information p(e,9)
)1
=2, 2 plwy)log, p(z)p(y)

reEX yey
 Mutual Information and Shannon Entropy are related

by: I(X;Y)=H(X)- H(X|Y)
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W Xn Yn W
> Encoder > Ch:(:\;'lm)el »  Decoder >
Message P Estimate of
Message

e Let Xand ) be the input alphabet and output alphabet,
respectively, and let S be the set of channel states. An
information channel is a system of probability functions:

Prn(B1y-- s Bnlat,...,an :S)
where a1,...,a, € X, G1,....6,€Y,andse S for n=1,2,....

e Mutual information between the input and output
provides a measure of channel transmittance:

T(x;Y) = H(X) — H(X|Y)

* The maximum over all distributions is known as the
channel capacity.
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e The communications topology determined by
available observation processes;
— fusing information from multiple sensors,
— Reconstituting lost or degraded sensing,

— Detect system changes reflected in changing
communication topology.

o Identify “correlative” structure of sensor data;

— Provides means of identifying relevant (possibly
abstract) subsystems,

— Basis for mesoscopic models and “summary’
variables.
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Undirected Graph & Adjacency Matrix
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Where Z; represents it sensor in power plant
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Agents and Observations

xl
@ Agent
Forager:
Logic
“Food”
descriptor (X.l)
xz X,

3

x;: a time series which is the observations at
node i

w;: a time series which is the partial
observations of x; at node i

Agent going from home node 3 to node 1:

Behavior:
The agent carries the data, w, ,from
its home node to the next node.
Food Definition:
The similarity, Correlation
Coefficient, between the time series
w; and w;.

d 65
Correlation Coefficient

T/\?

/
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Time Duration at this Iteration = [0:T]

Home Node =7 ”
Current Node =7 P
Carrying Data = X, ([0:T]) 7

Forward Flag =1

7/
Vs
Selected Next Node =1 el! a e
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Time Duration at this Iteration = [0:T]
Home Node =7

Current Node =1

Carrying Data = X, ([0:T])

Correlation Coefficient to Calculate is
between: { X, ([0:T]), X, ([0:T]) }

Correlation = Not High a e
Forward Flag =1

Selected Next Node =4 |

+Vr1
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Time Duration at this Iteration = [T:2T]
Home Node =7

Current Node =4

Carrying Data = X, ([0:T])

Correlation Coefficient to Calculate is
between: { X, ([0:T]), X, ([T:2T]) }

Correlation = Not High a e
Forward Flag =1

Selected Next Node =5 +V 1
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Time Duration at this Iteration = [2T:3T]
Home Node =7

Current Node =5

Carrying Data = X, ([0:T])

Correlation Coefficient to Calculate is

between: { X, ([0:T]), X;([2T:3T]) } a
Correlation = Not High _p
Forward Flag = 1 /

Selected Next Node =3 /
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Time Duration at this Iteration = [3T:4T]
Home Node =7

Current Node =3

Carrying Data = X, ([0:T])

Correlation Coefficient to Calculate is
between: { X, ([0:T]), X;([3T:4T]) } a
Correlation = High

Forward Flag=0

Selected Next Node = 7 (Home Node)

+Vr1
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Time Duration at this Iteration = [4T:5T]

Home Node =7

Current Node =7 +10xV 1
Carrying Data = X, ([0:T])
Forward Flag =1
Selected Next Node = 2 é




ASE% GREAT LAKES . . .
e | Graph Similarity

IVERSITY

* Our graphs are weighted bidirectional graphs
where w;; # wj;.

* In this case the Laplacian matrix is not
symmetric and therefore its eigenvalues are
not necessarily real positive numbers. This
makes some problems in calculating the
spectral distance with complex numbers.

* Use symmetrized Laplacian
L(G)=D(G)-(AG)+A@G)")
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N—1 ,
(ﬂ’l _:Ui) N-1 N-1
I:N_kN—l If ﬂfuz < ,uuz
\ 12 i=N-k i=N-k
d, (G H)=1
N-1 ,
(/?1 —,ui) N-1 N—1
I=N_kN—1 If ﬂﬁz > ,Uiz
\ /1-2 i=N—k i=N—k
\ =N —k |

— A represents the eigenvalues of the Laplac matrix for graph G

— u represents the eigenvalues of the Laplac matrix for graph H

— use L%J largest eigenvalues
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Gaussian Distribution 1 Gaussian Distribution 5
with with
1000 Iterations 1000 Iterations
\ J
|

2000 Iterations



ASE% GREAT LAKES
ESTERN | ENERGY

ESERVE INSTITUTE
IVERSITY

Spectral Distance
14

s Spectral Distance

12 s Mean for Windows of Data
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Test Data

Gaussian Distribution
3
with 800 Iterations

Gaussian Distribution
4
with 800 Iterations

Gaussian Distribution
5
with 800 Iterations

Gaussian Distribution
3
with 800 Iterations

I

3200 Iterations
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Spectral Distance
14

s Spectral Distance

12 s Mean for Windows of Data

Window Number
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e Before calculating the change points,
smoothing the distance vector eliminates
small fluctuations.

* Filtered instead of Averaging is
recommended.

e We suggest using “Savitzky-Golay FIR
Smoothing Filter”.
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e Minimum Mean Square Error (MMSE)
e Cumulative Summation (CUSUM)

e Combine above methods using bootstrapping
and with confidence level calculations to
eliminate false change points.
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1. Check the average of candidate change points

— Change point is the point with a value 30% higher
than the average.

2. Calculate the angle between the Iline
connecting two consequent candidate change
points

— Change point is the point with angle above 70
degrees.

 Both methods give similar results
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— Filtered Spectral Graph Distance

09 |
. Candidate Change Points

08 @ Change Point
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— Filtered Spectral Graph Distance
. Candidate Change Points
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e Supercritical Steam Plant

e Simulation of a 1000 Mwe Steam Power Plant
— Main steam flow: 600°C at 58 bar g
— Net heat rate: 9,045 kJ/kWh
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“Say ... whats a mountain goat doing
way up here in a cloud bank?”
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