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Technical Status
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2) Laboratory studies of effects of 
geomechanics on CO2 flow and 

transport
properties in fractured rock
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Concrete Sandstone Shale

Sample Origin Type II Portland 
Cement

Williams Fork 
Outcrop,West CO

Niobrara Form. 
Boulder, CO

E, Gpa; υ 30.0; 0.243 118.3; 0.142 49.3; 0.268

Φ; k, mD 9.56; 0.009 11.47; 0.349 6.65; 0.001 

Tensile Str., MPa 2.878 4.505 8.455

Uni-Comp Str, MPa 37.343 41.457 54.585

Sp. Heat, J/kg⋅K 891 857 990

Rock Property Tests
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• Three different rock types: concrete, sandstone and shale
• Acoustic test, permeability and porosity, Brazilian test, 

uniaxial compression test, specific heat



Permeability vs Effective Stress

• Fractured sample (Brazilian test), place spacers at corners
• Reassemble core, wrap core in sleeves, place in core     

holder
• Confining pressure applied, fluid flows through sample at 

specific rates, measure differential pressure
• Compute permeability versus effective stress
• CT scan core at each flow rate shows change in fracture 

aperture

6



Gray Berea Permeability

• Fractured core with spacers on left
• 3 M potassium iodide brine (provides X-ray contrast)
• Permeability vs flow rate for each effective stress
• Lowest measured permeability ~ unfractured permeability
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Nugget Sandstone Permeability

• Brine permeability measured, then scCO2 permeability
• Apparent permeability decreased by 10 for sc-CO2 flow 
• scCO2 expected to be non-wetting fluid 
• CT images – scCO2 is only in fracture at low effective stress
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3) Laboratory studies of CO2 and 
brine injection induced fracturing
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Equipment

• Tri-axial loading system: three 
pistons - two horizontal, one vertical

• Injection pump - Teledyne ISCO 
500HPx; ideal for brine and sc-CO2

• Data acquisition devices - Type T 
thermocouples; pressure 
transducers;

• Acoustic measurement devices -
Olympus pulser, two Olympus 
transducers and an Agilent DSO-X 
2004A digital oscilloscope
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Pulser

Oscilloscope

Transducers



Brine Injected into Concrete

• Six samples
• Triaxial stresses were (500,750,1000 psi) or 

(1000,1500,2000 psi)
• Various flow rates, with 40 ml/min the most common
• Peak pressure (fracturing first occurs) - lower at 

higher injection rates, incr. along with triaxial stress
• Fracture patterns, acoustic signatures before and 

after injection obtained
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Sample 40
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Surfaces of Sample 40 after dye and gas break-down.     Internal fracture morphology of Sample  40  
after dyeing and gas breakdown.



CO2 Injected into Concrete

• Twenty five samples
• Various triaxial stresses:  (1000<x<1500 psi), 

(1500<y<2250 psi), (2000<z<3000 psi),
• Various flow rates, with 40 ml/min the most common
• Samples, CO2, preheated to desired temperature
• Injected  CO2 either gas, liquid or supercritical 

depending on borehole conditions
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Sample 55
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CO2 injection pressure of Sample 55.                 P-wave signatures measured from Faces 2 & 4 of Sample 55.
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Shale Experiments

• Five shale samples from Niobrara shale outcrop, 
(CEMEX Lyons cement plant)

• Shale has natural fractures; epoxy injected into 
fractures through the borehole to seal them 

• Fluids injected: slickwater, gaseous CO2, and sc-CO2

• Triaxial stress values: (1100,1600,2100), 
(1200,2100,3000), and (1600,2100,2600)

• Pump rates: 40 or 80 ml/min for CO2; 1 ml/min for 
slickwater
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Shale Sample 3
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Borehole temperature profile during CO2 injection into          CO2 injection induced fracture planes in Shale  
Shale Sample 3.                                                                     Sample 3.
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4) Development of CO2 flow and 
geomechanics-coupled models for 

modeling
fracturing growth
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TOUGH2-CSM
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Mean Stress Equation
• Hooke’s law for a thermo-multi-poroelastic medium 

+ stress equilibrium equation + strain tensor 
definition = Navier equation, then take divergence

• Trace of Hooke’s law: volumetric strain equation
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Stress Tensor Components
• Derivatives of thermo-multi-poroelastic Navier 
equation vector components are zero:

• Normal 
stresses:

• Shear 
stresses:
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• Mohr-Coulomb failure –
shear failure of fault

• Mohr-Coulomb failure –
shear failure of randomly 
fractured caprock

• Hydraulic fracturing due 
to pore pressure greater 
than minimum principal stress 

Rock Failure Modes 

'
0Cτ µσ> +

min tensP σ σ> +

' '
1 33σ σ>
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• Permeability and porosity correlated to stress for 
faults

• Fractured media – fracture aperture correlated
to permeability:

• Fracture growth and extension (stress intensity 
factor):  

Post Rock Failure 
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• r,θ stress component equations cumbersome
• zz- stress calculated as before
• Sum of strains:

• Solve for displacement r-vector component:

• Strains:              ;
• rθ shear stress also

2D Cylindrical Coordinates 
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• Yamamoto et al. (2013)
• 100 m aquifer, 1000 m caprock above, 500 m below
• Outer radius of 4100 m
• Equilibrium stress and pressure fields initially
• Mohr-Coulomb failure in upper caprock
• 50 kg/sec CO2 injected into aquifer at center, 500 

days 

Example rz Problem
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Simulation Results



TOUGH2-FLAC
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Fracture Initiation and Growth
• Strain softening tensile behavior and softening of 
modulus

• Brittle to more ductile fracture behavior can be simulated by
changing the strain softening characteristics

• Aperture changes with fracture propagation are related to the
tensile strain normal to the fracture plane

• Permeability - cubic relation between fracture transmissivity
and fracture aperture. 
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Model Verification

• Simulation of injection induced fracturing around a well
• Water injection at a constant rate, then shut in
• Pressure profile close to theoretical value
• Fracture propagates into formation 
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Accomplishments to Date, I

• Set up laboratory apparatuses for measuring rock properties
• Performed five rock property measurements on cores made 

from concrete, sandstone and shale
• Measured permeability versus effective  stress for fractured 

gray Berea and sandstone
• Set up laboratory apparatuses for brine and CO2 induced 

fracturing 
• Performed fracturing experiments on concrete and shale 

samples using brine and CO2
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Accomplishments to Date, II

• Extended TOUGH2-CSM code to calculate stress tensor 
components and rock failure scenarios

• Modified TOUGH2-FLAC to simulate fracture initiation and 
growth
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Lessons Learned
• Laboratory results versus theoretical models – reconciling 

the two can be difficult - the conditions under which the two 
operate can be different

• Using a polyimide film between the sample and sleeve 
helped protect the sleeve from the sc-CO2 and allowed a 
longer test to be performed. 
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Synergy Opportunities
• Project entails laboratory studies of rock deformation and 

fracturing and development of coupled geomechanical 
models for rock deformation and fracturing

• Rock property data obtained elsewhere can enhance our 
research efforts; rock property data obtained here could 
enhance other research efforts

• Our geomechanical models could be applied to other 
research efforts; other geoemechanical models could 
suggest enhancements of ours
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Project Summary
• We have a large amount of results from the 

experimental portion of the project

• We have modified our numerical models to simulate 
injection induced property changes

• The remaining work in this project will be centered on 
model validation and application to the field
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Appendix
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Benefit to the Program 

• Laboratory studies of rock deformation, fracturing with 
coupled geomechanical modeling to quantify effects of 
geomechanics and flow on safe and permanent geological 
storage of CO2

• Understanding of geomechanical effects on CO2 flow and 
storage in fractured reservoirs; develop modeling tools for 
assessment of CO2 geo-storage systems

• Technology developed in project will contribute to our 
ability to predict CO2 storage capacity in geologic 
formations to within ±30 percent
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Project Overview:  
Goals and Objectives

• Understanding and correlations for injection pressure 
induced geomechanical effects (rock deformation, fracturing) 
on CO2 storage systems, through lab experiments

• Incorporate above into simulators (TOUGH2-CSM  and 
TOUGH-FLAC) to model CO2 injection induced rock 
mechanical processes associated with CO2 storage in 
reservoirs

• Quantify flow, storage, and potential leakage pathways; 
develop remediation measures when needed
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Organization Chart

Colorado School of Mines

Philip Winterfeld, Research Associate Professor, Petroleum Eng.
Yu-Shu Wu, Prof. and CMG Reservoir Modeling Chair, Pet. Eng.
Xiaolong Yin, Assistant Professor, Petroleum Engineering

Computer Modeling 
Group (CMG)

Industry sponsor

Lawrence Berkeley National Laboratory
(Hydrogeology Department)

Tim Kneafsey, Staff Scientist and Head

Jonny Rutqvist, Staff Scientist
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Gantt Chart
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Gantt Chart, continued
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