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Problem Statement
• Sealing efficiency of CO2 reservoirs has to 

exceed 99%.
• Design criteria are needed that establish the 

long term sealing capacity of CO2 reservoirs and 
to model leakage risk.

• Top and fault seal risk assessment well 
established in oil & gas exploration, but:

• scCO2 and CO2 brine potentially interact 
physically & chemically with top seal.

• Seal risk assessment criteria taking these 
interactions into account are needed for CO2
systems. 2
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Opening-mode & sheared opening-mode fractures control flow properties 
of conductive fault zones.
Slip surfaces control damage zone evolution.
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Fractures in CO2 caprock
Crystal Geyser field analog site

Active on 102 - 105 year time scales

5 cm



Methodology
• Experimental measurement of subcritical 

fracture propagation in various shale lithologies
– Double torsion test, unconfined conditions
– Short-rod test, confined conditions (scCO2)

• Textural and compositional characterization
– Shale material used for fracture testing
– Post-mortem analysis of lab test specimens
– Fractures & CO2 alteration in natural systems

• Numerical modeling of fracture propagation in 
top seals
– Fracture network modeling using JOINTS
– Upscaled modeling for top seal deformation using 

Sierra Mechanics
5



Mode-I fracture testing
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V: fracture propagation velocity
KI: mode-I stress intensity factor 
K0: Stress corrosion limit
KIC: mode-I fracture toughness
n: subcritical crack index (SCI)

Experimental setup



Testing protocol
• Three shale types

– Woodford, Mancos, Marcellus
– Also sandstones for comparison/integration

• Room dry, CO2gas, DI water
• Varying salinity, NaCl, KCl
• Varying pH
• Room temperature, 65°C 
• Some samples coated with hydrophobic 

agent to limit fluid/rock interaction to fracture 
tip 7



Shale sample composition
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Fracture trace imaging
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10 µm 20 µm 2 µm

Woodford Mancos Marcellus

Woodford, Mancos: intergranular (clay matrix)
Marcellus: intragranular (cleavage)



Fracture surface imaging

10Roughness variation, but no plumose structure
Grain boundary breakage vs transgranular breakage
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Water content
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Water enhances subcritical fracturing for clay-rich shales 
 Strong reduction of  KIC (48%) and SCI (75%) with increasing water content
 K-V curves obey power-law, indicating fracturing in stress-corrosion regime (I)
 Load relaxation technique (lines) matches constant loading rate method (squares)

Woodford shale, 23°C



Salinity
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Woodford shale, NaCl brine, 23°C

Increase of  fluid salinity increases KIC and SCI  in clay-rich 
Woodford and Mancos shales

 Less weakening in KCl brine than in NaCl brine 
 Clay swelling
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pH
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SCI decreases with decreasing pH for carbonate-rich Marcellus shale
 KIC is independent of  pH
 SCI effect opposite to that in glass and quartzite
 Calcite dissolution
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Marcellus shale, HCl solution, 23°C



Temperature

14

Increase in temperature 
enhances subcritical 
fracturing
• Left-ward shift for all shales
• Concentration effects less 

pronounced at elevated  T

Marcellus, DI water Woodford, DI water

Woodford, NaCl Woodford, HCl

pH1.80.17M
0.1M

pH1
pH3

Woodford, 65°C

DI water
NaCl, 0.17M
HCl, pH1.8



Summary of K-V relations
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Time-to-failure analysis
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Constant stress loading:

⇒
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Assume subcritical crack growth limit @ 10-10 m/s:
 To meet safe storage time>104 years, σ<0.004 

MPa for wet, σ<0.01 MPa for dry conditions.
 Under σ=1 MPa, failure occurs at 61 days for 

wet, 402 days for dry. 

Evans (1972) & Nara et al. (2015)



JOINTS modeling
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• Linear elastic, Boundary element code
• Pseudo-3D, accounts for elastic interaction

– Opening- and mixed-mode fracture propagation
• Allows simulation of  fracture network development 

as function of  
– Subcritical index (SCI) and KIC

– Elastic material properties
– Distribution of  nucleation sites (seed fractures)

Plan and cross-section realizations
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JOINTS plan view
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Fracture aperture distribution
CO2: 0.03 mm
DI: 0.29 mm

Medians 1% NaCl: 0.03 mm
10% NaCl: 0.29 mm
Acid: 0.28 mm

DI: 0.24 mm
Medians 1% NaCl: 0.20 mm

10% NaCl: 0.25 mm
Acid: 0.25 mm
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• 1% NaCl: Fewer, but wider 
fractures

• Acid: More seeds activated 
but @ smaller aperture

• Less spread in aperture 
range for different test 
environments than 
Woodford



JOINTS cross sections

Woodford, 1% NaCl
0.29 MPa√m, 19, 2.0 GPa

Woodford, 10% NaCl
0.24 MPa√m, 14, 2.0 GPa

2 m

10 m

Woodford, DI water
0.38 MPa√m, 14, 2.0 GPa

Woodford, acid
0.28 MPa√m, 11, 2.0 GPa

Woodford, dry CO2

0.80 MPa√m, 69, 5.0 GPa



Summary
• Chemical environments, rock mineralogy, and temperature 

influence shale fracture properties. 
• Larger wet-dry differences in clay-rich shales (Woodford and 

Mancos) than in carbonate-rich shale (Marcellus).
– “Wet” fracture growth rate faster by one-order of magnitude

• Increasing temperature enhances subcritical fracturing.
• Carbonate-rich Marcellus: carbonate dissolution

– SCI sensitive to acidic pH
– KIC independent of chemical environment

• Woodford & Mancos: clay-water interaction
– KIC and SCI sensitive to water content and salinity.
– Water-weakening enhances subcritical fracturing 

• Environmental effects controlled by competition between 
fracture growth rate and rate of rock degradation by fluid-rock 
interactions. 21



Implications for CO2 seal integrity
• Dry tests potentially applicable to dry scCO2 systems

– Dry-out by CO2 injection expected to strengthen 
caprock

• Increasing caprock failure risk with increasing 
temperature

• Clay-rich caprocks:
– More pronounced dry-out effect
– Lower risk for seal failure by subcritical fracture growth 

in scCO2 system
– High salinity strengthens caprock

• Carbonate-rich caprocks:
– More prone to subcritical fracture by pH decrease 

through dissolution of CO2 in brine
22



Accomplishments to Date

• Fracture mechanics testing on caprock 
lithologies in dry & aqueous environments 
of varying composition, varying 
temperature

• Numerical simulations on fracture network 
evolution by chemically aided fracture 
growth

• Simulated caprock leakage behavior using 
continuum models for varying well/ 
reservoir/caprock geometry

23



Next steps (in progress)

• Short-rod fracture testing under 
confinement with scCO2

• Upscaled seal failure & leakage 
simulations 
– Integration of continuum & fracture network 

modeling

24



Synergy Opportunities

• Fracture mechanics analysis of Cranfield
and FutureGen II core material

• Integration with tests of frictional behavior 
under chemically reactive conditions

• Integration of results with fracture network 
modeling (phase-field, cohesive end-zone, 
peridynamics)

• Integration with hydraulic fracture research

25



Appendix

26
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Benefit to the Program 
• Program goals: Develop characterization tools, technologies, and/or 

methodologies that improve the ability to predict geologic storage capacity 
within ±30 %, improve the utilization of the reservoir by understanding how 
faults and fractures in a reservoir affect the flow of CO2, and ensure storage 
permanence.
– Area of Interest 2 – Fractured Reservoir and Seal Behavior: Develop 

tools and techniques to increase the accuracy and reduce the costs of 
assessing subsurface seal containment and the seal/reservoir interface, 
including the measurement of in-situ rock properties in order to develop 
a better understanding of seal behavior when CO2 is injected into a 
reservoir. 

• Project is designed to 
– Provide calibrated and validated numerical predictive 

tools for long-term prediction of reservoir seal integrity 
beyond the engineering (injection) time scale.

– Contribute toward technology ensuring 99% storage 
permanence in the injection zone for 1000 years.
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Project Overview:  
Goals and Objectives

• Perform laboratory fracture mechanics testing to 
– gain fundamental understanding into fracture processes in chemically 

reactive systems and to 
– provide input parameters on fracture constitutive behavior, fracture 

rate and geometry, and deformation and transport processes involved 
in subcritical chemically assisted fracture growth for relevant top seal 
lithologies.

• Derive predictive and validated numerical models for 
fracture growth in chemically reactive environments relevant 
to CCUS top seal lithologies. 

• Validate numerical & laboratory observations against 
microstructural and textural observations on fractures 
from natural CO2 seeps.

• Perform upscaled numerical simulations that are informed 
by field and lab results toward predictive tools for top seal 
integrity analysis, top seal mechanical failure, and impact 
on CO2 leakage in CCUS applications.
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Organization Chart/ 
Communication Plan

• Established Sandia-UT collaboration
• Olson –– Eichhubl on joint industry projects
• Dewers – Newell –Eichhubl on joint EFRC



Gantt Chart

*  Short-rod tests (task 2.1) are being performed under task 2.3 under confined conditions.
** No-cost extension pending following discontinuity of funding for Sandia in PY 17.
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1. Project Management and Planning            p p p
2.1. Short rod fracture toughness tests * * * * * * * * * * * *
2.2. Double torsion tests            p p
2.3. Fracturing in water-bearing supercritical CO2        p p
3.1. Field fracture characterization        

3.2. Textural and compositional fracture imaging        

4.1. Discrete fracture modeling using Sierra Mechanics        p p p
4.2. Fracture network modeling using JOINTS       p p p
4.3. Upscaled modeling using Kayenta   

5. Model validation and integration    p p p

Task/Subtask

Year 1 Year 2 Year 3 Year 4**
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