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Project Overview

O Funding:
DOE: $990,334
Cost share: $261,110
Total project: $1,251,444

J Performance dates:
10/1/2015-9/30/2017

O Project Participants:
- University of Kentucky
- University of Delaware
- Algix LLC
- Duke Energy

Project Objectives:

Optimize UK’s technology for microalgae
cultivation and processing with respect
to cost and performance, particularly
with regard to harvesting and dewatering

Develop strategies to monitor and
maintain algae culture health

Develop a biomass utilization strategy
which produces lipids for upgrading to
fuels and a proteinaceous feedstock for
the production of algal-based bioplastics

Perform techno-economic analyses to
calculate the cost of CO, capture and
recycle, and life cycle analyses to
evaluate the GHG emission reduction
potential.



Simplified Process Schematic
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Large-Scale Algae Cultivation

Open Ponds:

e Relatively low capital cost
* Mature technology
e Operationally simple

* large area requirements
e Significant evaporative losses
e Subject to contamination
* Low CO, utilization efficiency

Photobioreactors:

* Higher yield of biomass per unit area
e Low water loss

 Lower risk of culture contamination
e (Can be further optimized?

* High capital cost
e Technology is not mature
e QOperational costs?




Advantages and Challenges

» Ability to generate a valuable product, thereby off-setting costs of
CO, capture (potential for new industry)

» No need to concentrate CO, stream
» Potential to polish NOx and SOx emissions

= Areal productivity such that very large algae farms required for
significant CO, capture

= CO, capture efficiency modest (<50%)

* Challenging economics: cost of algae cultivation is high (currently
>51,000/MT), hence require medium to high value applications for
produced algae biomass

= Market size generally inversely related to application value (hence
risk of market saturation)



Plant Integration |
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e Task 1: Project Management (all)
e Task 2: Engineering Analysis & Testing (UK):
- PBR/power plant heat integration assessment

- design, construction and lab testing of continuous algae dewatering system
- operation and field testing of PBR + dewatering system

e Task 3: System Biology (UD):
- plant outage mitigation system design

- effect of flue gas constituents on biomass composition

e Task 4: Biomass Valorization/Utilization (UK/Algix)
- lipid extraction from wet algae biomass
- characterization of production biomass
- bioplastic formulation
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Engineering Analysis & Testing (Task 2):
Heat Transfer Model for Photobioreactor
Modeled as a Single Tube
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Experimental Determination of U (Overall Heat Transfer
Coefficient) using Data from 2015 Growing Season (May-Sep)
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Reduction in Overall CO, Capture vs. Ambient Temperature
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» Assumptions: 30% CO, capture from a 1 MW coal-fired power plant
> Heat source = boiler water (910,000 L/min, T = 32-45 °C)

» Increased CO, emissions arise from pumping boiler water to PBR heat
exchanger and increased cycling of PBR culture through heat exchanger



Continuous Thickener Prototype
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» 25 L lamella thickener: conical-shaped settling chamber to promote biomass
compaction; 11 lamella plates inclined at 45° to provide settling surface for
residual solids

» Overflow analyzed for residual solids (cytometer, UV-vis spectrophotometer)

10



Effect of Dosage
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Note: Filled data points denote batch flocculant addition
Open data points denote continuous flocculant addition

» 95% solids recovery using 7 ppm flocculant and retention time of 50 min

» Results for continuous flocculant addition also promising
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East Bend Station Demonstration Facility

DUKE
ENERGY.

650 MW Scrubbed Unit (SCR, FGD, ESP)
MAIN GOALS

* Define kinetics of process

— Monitor dissolved CO, and O, to determine
photosynthetic rate

— Help size large system and next generation design

Average 28.0
 Gain understanding of real capital and operating costs .
T ) Minimum 7.2 14.5 6.5
— Minimize energy consumption
Max. 9.6 97.2 84.3

e Measure biomass composition to track heavy metals

and other flue gas constituents 5



East Bend Station: Field Testing

Flue gas injection system updated
with updated regulator, flow
meter/totalizer, and pressure gauges

Improved PBR installed at East Bend,
along with updated control and data
tracking system

PBR inoculated in mid-June

Strong algae growth observed; one
plant outage and one lightning strike

to date!
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Gas Analysis at Photobioreactor Outlet
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» 0O, production correlates with CO, consumption

» Complete SOx removal from flue gas; ca. 50% NOx removal



System Biology (Task 3): Effect of N-Source with 9% CO,

Dry weight (mg/L)

Lipid productivity (mg/L/day)
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N-source concentrations were set based
on an equivalent price per L of media
(0.13 g urea, 0.04 g of KNO,, and 0.08 g
NaNO, based on FOB prices)

Lipid productivity was the same for
nitrate grown cultures. However, both
total achievable biomass and lipid
productivity declined significantly for
urea grown cultures after 6 and 12 days
of growth.

These results suggest that nitrate from
the auto-oxidation of NOx at East Bend
may be contributing significantly to the
growth rates observed in the field.

These results also support that nitrate
supplementation could be economically
feasible.



Biomass Utilization (Task 4):
Lipid Extraction

Raw algae slurry (g) | Recovered solids (g) | Recovered lipids (g) | Recovered mass (%)

12.7 (+/-0.2) 84.0 (+/-4.7)

1027.3 (+/-10.1) 156.2 (+/-10.2)

Average +/- st. dev. from 6 experiments

Wet Scenedesmus, typically ~15 wt%
solids

Ultrasound, microwave irradiation and
bead beating all proved ineffective for
cell lysing

Acidification to pH 1 using aq.
HCI/MeOH results in cell lysing and
simultaneous lipid (trans)esterification
Yield of lipids = 6.3 (+/- 0.1) wt%, close
to value reported previously for dry
Scenedesmus*

Simulated Distillation of Esterified Lipids
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*E. Santillan-Jimenez, R. Pace, S. Marques, T. Morgan, C. McKelphin, J. Mobley, M. Crocker, Fuel 180 (2016) 668-678 16



Wt %

Elemental Analysis of Whole and Defatted Algae
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» High N content of
defatted algae implies
high protein content,
confirmed by Algix
(50.7% protein)

» Defatted algae showed
significantly improved

odor properties

» Bioplastic compounding
studies in progress
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Key Milestones / Success Criteria

| DecisionPoint | Date | SuccessCriteria | Status

Demonstration of continuous 9/30/16
dewatering

Verification of methodology 9/30/17
for culture maintenance

Validation of bioplastic 9/30/17

properties

Lifecycle analysis 9/30/17

>50 wt% total lipid recovery >80% lipid
demonstrated for wet extraction recovery achieved
Solids recovery of >95% >95% solids
demonstrated recovery achieved

Maintenance of culture viability for 2
weeks without flue gas

Mechanical properties of bioplastics
derived from defatted algae better
or equal to bioplastics based on
whole cell algae

Lifecycle analysis shows net positive
greenhouse gas emission reduction
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Summary

Waste heat integration study completed

Prototype continuous dewatering system designed,
constructed and tested, with good results (>95% algae
capture)

Field testing at East Bend Station commenced

Nutrient studies suggest strategies for increasing
Scenedesmus productivity

Method for lipid extraction from wet algae (10-15% solids)
identified

Lipid extraction scaled up (5 kg defatted algae produced for
testing at Algix)



Future Work

Nitrogen source experiments to be conducted using flue gas

Plant outage experiments (cultures currently being
acclimatized to flue gas conditions)

Cyclic flow PBR operation at East Bend with collection of
performance data for mass and energy balances

Field testing of continuous dewatering system

Bioplastic compounding studies using whole and defatted
algae

TEA and LCA
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