the Energy to Lead

Nano-engineered catalyst for the utilization of CO₂ in dry reforming to produce syngas

DOE Contract No. DE-FE0029760

Shiguang Li, Gas Technology Institute (GTI)
Xinhua Liang, Missouri University of Science and Technology (Missouri S&T)

Kickoff Meeting September 12, 2017

Outline

- Introduction to team members
- Project overview
- Technology fundamentals/background
- Research plan
- Preliminary results

Introduction to GTI

- Research organization, providing energy and environmental solutions to the government and industry since 1941
- Facilities: 18 acre campus near Chicago

Introduction Missouri S&T

- **Co-educational research** university located in Rolla, Missouri
- **Prof. Liang Group**: expertise in atomic layer deposition thin coatings, catalyst preparation, characterization, and testing

Dr. Xinhua Liang

Zeyu Shang

Weston Shoemaker

Xiaofeng Wang

Han Yu

Ye Jin

Project overview

- **Performance period**: July 1, 2017 June 30, 2020
- **Funding**: \$799,807 DOE (\$199,990 co-funding), three year effort
- **Objectives**: Develop nano-engineered catalyst supported on high-surface-area ceramic hollow fibers for the utilization of CO_2 in dry reforming of methane $(CO_2 + CH_4 \rightarrow 2 H_2 + 2 CO)$ to produce syngas

Team:

Member	Roles
gti	 Project management and planning Quality control, reactor design and testing Techno-Economic Analysis (TEA) and life cycle analysis (LCA)
MISSOURI	 Catalyst development and testing

Project organization and structure

Process description

Dry reforming of methane using CO₂

- CH₄ + CO₂ → 2H₂ + 2CO with H₂/CO ratio <1 due to the reverse water-gas shift reaction (CO₂ + H₂ ⇌ CO + H₂O)
 - Different from methane steam reforming (CH₄ + H₂O \rightarrow CO + 3 H₂) where H₂/CO ratio >3 due to water-gas shift reaction (CO + H₂O \rightleftharpoons CO₂ + H₂)
- H₂/CO ratio can be adjusted by blending with products from steam reforming
- Typical catalysts:
 - Precious metals (Pt, Rh, Ru): expensive
 - Low-cost Ni: issue of sintering of the Ni particles

Nano-engineered Ni catalyst prepared by atomic layer deposition (ALD)

- Bis(cyclopentadienyl)nickel,
 Ni(Cp₂), used as a precursor
- Self-limiting sequential surface chemical reactions

TEM image of γ -Al₂O₃ spheres supported Ni catalysts

- Ni particle size: 2-6 nm, average 3.6 nm
 - Particles prepared by traditional methods are ~10-20 nm
- Smaller nanoparticles can increase active sites

X-ray photoelectron spectroscopy (XPS) analysis indicates the presence of NiAl₂O₄

- Metallic Ni can be observed on as-deposited Ni/Al₂O₃ catalyst
- Metallic Ni was oxidized to NiO and NiAl₂O₄ when catalysts were calcined in air at 550°C

H₂-Temperatrue programmed reduction (TPR) analysis

- NiAl₂O₄ spinel would form in the Ni ALD process.
- No NiAl₂O₄ spinel would form for Ni catalysts prepared by conventional method.

Performance of ALD Ni/γ-Al₂O₃ catalyst

- Catalyst was regenerated by oxidation and reduction between cycles
- Conversion stable at 850 °C after 140 hours in 2nd cycle
- Only slight deactivation at lower temperatures (<3% in 50 hours)

Advantages over traditional catalysts prepared by incipient wetness (IW)

Higher activity due to highly dispersed nanoparticles: ~3.6 nm Ni particles compared to ~10-20 nm particles prepared by traditional methods

Catalyst	CH₄ reforming rate (L⋅h-¹gNi-¹)			H ₂ /CO ratio in the product		
	850°C	800°C	750°C	850°C	800°C	750°C
ALD	1840	1740	1320	0.82	0.78	0.68
IW	1700	1150	480	0.70	0.61	0.51

 Better stability due to strong bonding between nanoparticles and substrates since the particles are chemically bonded to the substrate during ALD

Novel α -Al₂O₃ hollow fiber with high packing density is being used as catalyst substrate in current project

Commercial substrates

Catalyst Geometry	SA/V (m ² /m ³)
1-hole	1,151
1-hole-6-grooves	1,733
4-hole	1,703
10-hole	2,013
Monolith	1,300
4-channel ceramic hollow fibers	3,000

Novel α -Al₂O₃ hollow fibers

- Four channels, 35 cm long
- OD of 3.2 mm and a channel inner diameter of 1.1 mm
- Geometric surface area to volume as high as 3,000 m²/m³
- Currently being tested in a packed bed reactor with catalyst supported on ~2-cm long fibers

In addition to packed bed reactor, a pressure-driven transport reactor will be designed and tested

Overview/roadmap

Task 1: Project management and planning (throughout the project)

Project funding profile

	Budget Period 1		Budget Period 2		Total Project	
	07/01/2017-12/31/2018		01/01/2018-06/30/2020			
	Government Share	Cost Share	Government Share	Cost Share	Government Share	Cost Share
GTI	\$70,026	\$15,136	\$329,775	\$49,854	\$399,802	\$64,990
Missouri S&T	\$230,830	\$66,813	\$169,176	\$68,187	\$400,005	\$135,000
Total	\$300,856	\$81,949	\$498,951	\$118,041	\$799,807	\$199,990
Cost Share	79%	21%	81%	19%	80%	20%

Milestones

Budget	Task/ Subtask	·		Completion Date		
Period	Number			Actual		
1	1	Updated Project Management Plan.	08/31/17	07/03/17		
1	1	Kickoff Meeting.	09/30/17	09/12/17		
1	2	Catalyst showed CH ₄ conversion >90%, H ₂ /CO ratio of 0.7-0.85, and CH ₄ reforming rate >2,200 L/h/g _{Ni} at 800 $^{\circ}$ C and 15-25 psia.	03/31/18			
1	3, 4	Hollow fiber supported catalyst showed CH_4 conversion >95%, H_2/CO ratio in the range of 0.7-0.85, and CH_4 reforming rate >2,300 L/h/g _{Ni} at 800 °C and pressure of 15-25 psia.	12/31/18			
1	5	200 hours testing showed CH ₄ conversion decrease less than 20% at 800°C and pressure of 15-25 psia.	12/31/18			
1	1	Submit Continuation Application.	10/01/18			
2	6	20 pieces of 20-cm long hollow fibers coated with catalysts shipped to GTI for testing in catalytic reactor.	09/30/19			
2	7	Reactors containing multiple hollow fibers passed commissioning testing.	03/31/19			
2	8	Catalytic reactor showed CH_4 conversion >95%, H_2/CO ratio of 0.7-0.85, and CH_4 reforming rate >2,200-2,500 L/h/g _{Ni} at 800°C.	09/30/19			
2	9,10	200 hours testing in catalytic reactor showed conversion decrease less than 10% at 800°C.	06/30/20			
2	11	Issue topical report on technical and economic feasibility and life cycle analysis	06/30/20			
2	1	Submit Final Technical Report.	07/30/20	ΩTI		

Success criteria

Decision Point	Date	Success Criteria
Go/no-go decision points	12/31/18	 Fiber supported catalyst shows CH₄ conversion >95%, H₂/CO ratio of 0.7-0.85, and CH₄ reforming rate >2,300 L/h/g_{Ni} at 800 °C and 15-25 psia 200 hours testing shows CH₄ conversion decrease less than 20% at 800°C and 15-25 psia
Completion of the project	6/30/20	 Catalytic reactor shows CH₄ conversion >95%, H₂/CO ratio of 0.7-0.85, and CH₄ reforming rate >2,200-2,500 L/h/g_{Ni} at 800°C 200 hours testing shows conversion decrease less than 10% at 800°C

Equipment for catalyst development at Missouri S&T

Horizontal ALD reactor

Autosorb-1 physisorption

AutoChem II 2920 chemisorption

Packed bed catalytic reactor

Catalyst development strategies

Current status

ALD Ni/ α -Al₂O₃ hollow fiber (1-cm long)

Improvement

ALD Ni/α -Al₂O₃ hollow fiber (1-cm long)

Scale-up

ALD Ni/ α -Al₂O₃ hollow fiber (20-cm long)

Equipment for catalyst testing at GTI

Preliminary risk assessment: technical challenges and mitigation strategies

ikelihood

Challenges/Risks

1) Longer-term stability of catalyst Mitigation:

- 1a: Address any issues observed during a 200-hour testing
- 1b: Develop a catalyst regeneration process

2) Catalytic reactor sealing/potting Mitigation:

- 2a: Use advanced potting materials
- 2b: Leave the potting ends in a lower temperature zone

3) Pressure-driven transport configuration not as good as expected <u>Mitigation</u>:

■ 3a: Alternate designs

Consequence

Preliminary results: ALD Ni/ α -Al₂O₃ hollow fiber shows higher CH₄ reforming rate than ALD Ni/ γ -Al₂O₃

Catalyst	CH₄ reforming rate (L·h ⁻¹ gNi ⁻¹)					
Catalyst	850°C	800°C	750°C	700°C		
ALD Ni/γ-Al ₂ O ₃ porous sphere	1840	1740	1320	720		
ALD Ni/α-Al ₂ O ₃ hollow fiber	1970	2040	1770	980		

Plans for future development

In this project

Project just started, will focus on project work and meeting milestones

After this project

Test with real captured CO₂ from our CO₂ capture system

Summary

- We are developing ALD nano-engineered catalysts for utilization of CO₂ in dry reforming of methane to produce syngas
- ALD nano-engineered catalyst improves catalytic activity and stability
- Novel α-Al₂O₃ hollow fiber increases surface area, and enables pressure-driven transport reactor configuration
- Preliminary study indicated that Ni catalyst supported on α-Al₂O₃ hollow fiber had higher reforming rate than that on the γ-Al₂O₃ porous particles

Catalyst	CH₄ reforming rate (L·h⁻¹gNi⁻¹)				
	850°C	800°C	750°C	700°C	
ALD Ni/γ-Al ₂ O ₃ porous particles	1840	1740	1320	720	
ALD Ni/α-Al ₂ O ₃ hollow fiber	1970	2040	1770	980	

Acknowledgements

Financial and technical support

DE-FE0029760

NETL Project Manager Bruce Lani