Optimized microbial conversion of bituminous coal to methane for *in situ* and ex situ applications

Kick off meeting 12-09-2014

Outline

- Overall objectives
- Proposed tasks
- Background
- Results previous to the DOE project
- Task 1.0
- Task 2.0

Objectives

- 1) optimize methane production from bituminous coal through biological coal conversion (BCC)
- 2) demonstrate feasibility of the developed technology for *ex situ* and *in situ* applications.

Tasks

- Task 1 Project Management, Planning and Reporting
- Task 2.0: Simplify the composition of the nutrient medium
- Task 3.0: Investigate individual and interactive effects from different parameters
- Task 4.0: Maximize methane productivity in a fed-batch system
- Task 5.0: Bioconversion under pressurized conditions
- Task 6.0: Ecological Considerations of the Proposed Process
- Task 7.0: Economic Analysis of the Proposed Process

Proposed pathways: from coal to methane

¹Spirochaeta, ²Sporomusa, ³Cytophaga, ⁴Acidoaminococcus, ⁵Flavobacterium, ⁶Methanocorpusculum, ⁷Rhodobacter(?)

Previous results

- Microbial structure of the original microbial community in the formation water
- Microbial population of the adapted consortium
- Methane production from bituminous coal
- Identification of extracellular proteins
- Properties of coal residue after bioconversion

Sampling sites

Bacteria species in the formation water

231 bacterial species

The top species can degrade polymers, utilize benzoate, fatty acids, sugars for growth, reduce sulfate.

Archaea species in the formation water

33 archaea species

The majority (89.8%) of archaea belonged to the order of Methanobacteriales

Bacterial species in the adapted consortium

185 species

Dominant ones in the original community became minor.

Archaea species in the adapted consortium

nine species

Minor order of *Methanomicrobiales* became the dominant one (90.4%).

Methane/CO₂ production: comparison among different solution

Methane/CO₂ production: with and without purging

Results

- Medium #2 is better than medium #1 in terms of enhancing methane yield.
- After adding acclimated microbial consortium to coal in medium #2, purging with N_2 is not necessary to create an anaerobic environment.
- The acclimated microbial consortium gave a methane yield of 5.6 ft³/ton/day during the first 20 days, which is higher than 1.3 ft³/ton/day in 65 days through the original microbial community.

Methane/CO₂ production: comparison with various controls

Results

- The coal sample we used contain microbial strains. But they are unable to produce methane.
- The acclimated microbial consortium can generate CO₂ from carbon sources (yeast extract, peptone) in the nutrient solution or medium.
 But they cannot produce methane from these carbons.
- All methane we observed is from coal degradation.
- Using coal (40-70 mesh), methane production rate is 4.0 ft³/ton/day, which is lower than 5.6 ft³/ton/day from finer coal (< 40 mesh).

Comparison with other reported results

Coal source	Coal rank	Source of microbial community	Methane production rate ft3/ton/day	Temperature ©	Shaking	Test duration (days)	Particle size (um)	Reference
Powder river basin	Subbituminous B	Well water	2.7	22	100 rpm	26	250-600	Green et al., 2008
Texas	Subbituminous	Wetland sediment	0.8	22	No	70	2000-10000	Jones et al., 2010
Texas	Lignite	Wood eating termite	424-600	37	No		44-595	Harding et al., 1993
Utah	Bituminous	waste coal	73.1	23	No	30	< 74	Opara et al., 2012
	coal waste		43.8a					
	Lignite		40.2					
Australia	Subbituminous	Formation water	30	37	50 rpm		300-600	Papendick, 2011
Pocahontas No. 3	Low volatile bituminous	Formation water	2.1b	22	No	60	NA	Fallgren et al, 2013
Pittsburgh NO. 8	High volatile bituminous	Formation water	1.2b	22				
Illlinois	Bituminous	Formation water	5.6	28	No	20	<420	This study

Enzymes involved in methane formation

Fig. 2. Scheme of methanogenesis from H₂/CO₂ (A), acetate(B) and methanol (C). Methyl-coenzyme M (CH₃-S-CoM) is a central intermediate in all three pathways. It is converted to methane and the heterodisulfide of coenzyme M and coenzyme B (CoM-S-S-CoB). CoM-S-S-CoB thus generated functions as the terminal electron acceptor of different respiratory chains. H₂ and reduced coenzyme F₄₂₀ (F₄₂₀H₂) have been identified as electron donors for the reduction of CoM-S-S-CoB. The unknown mechanism of electron transfer from the reduced ferredoxin (Fd_(red)⁻) to CoM-S-S-CoB in acetate- and methanol metabolism is symbolized by a question mark. The role of H₂ as an intermediate of this reaction is discussed below (see Fig. 14). Abbreviations: CHO-FMR, *N*-formylmethanofuran; CHO-H₄MPT, *N*⁵-formyltetrahydromethanopterin; CH₂=H₄MPT, *N*⁵, *N*¹⁰-methylene-tetrahydromethanopterin; and CH₃-H₄MPT, *N*⁵-methyl-tetrahydromethanopterin. For structures of the coenzymes, see Figs. 3, 7 and 9. For simplicity, only tetrahydromethanopterin (H₄MPT) is shown. For other methanopterin derivatives, see Fig. 9.

Category			# of protein family Abunda		
Substrate transport			52		
	Outer membrane proteins	Substrate binding, transport	14	2.37	
	ABC transporter substrate-binding	Transport amino acids, sugars, phosphonate	18	0.58	
	Porin	Channels for specific molecule transport	3	0.32	
	C4-dicarboxylate ABC transporter	Transport malate, succinate and fumarate across the cytoplasmic membrane	3	0.14	
	Starch-binding protein	Bind and transport starch	1	0.07	
	Collagen-binding protein	Bind and transport collagen	1	0.04	
	Others	Molecular chaperone, receptor, etc	8	Vario	
Cellular metabolism			36		
	Glutamate dehydrogenase	Convert glutamate to oxoglutarate. $\mathrm{NH_4}^+$ is released through the reaction	5	1.38	
	Flagellin protein	Structural protein that forms the major portion of flagellar filaments	5	0.39	
	Transcriptional regulator	Regulate transcription from DNA to RNA	5	0.39	
	Cytochrome c	Coupling factor for hydrogenase	2	0.16	
	Others	ATP synthase, DNA polymerase, etc.	19	Vario	
Substrate utilization			24		
	Iron hydrogenase	Catalyze the reversible reaction of hydrogen to hydrogen ion	2	0.48	
	Glucokinase	Phosphorylate glucose to glucose-6-phosphate	1	0.13	
	Sulfite reductase	Reduce sulfite	3	0.11	
	Rhamnulokinase		1	0.08	
	Glycoside hydrolase	Phosphorylate rhamnulose to rhamnulose 1-phosphate	1	0.05	
		Assist in the hydrolysis of glycosidic bonds in complex sugars	1	0.03	
	Others	Various	16	Variou	
Oxidative stress			10		
	Rubrerythrin	May reduce hydrogen peroxide	1	1.27	
	Ssuperoxide dismutase	Reduce superoxide	3	0.22	
	Peroxidase	Reduce peroxide	1	0.21	
	Others	Oxidoreductase	5	Variou	
Hypothetical proteins	Various	Unknown	37	Variou	

Task 4: Identification of enzymes secreted by bacteria

Category	Protein name	Function	# of protein family	Abundance
Substrate transport			52	
	Outer membrane proteins	Substrate binding, transport	14	2.37
	ABC transporter substrate-binding	Transport amino acids, sugars, phosphonate	18	0.58
	Porin	Channels for specific molecule transport	3	0.32
	C4-dicarboxylate ABC transporter	Transport malate, succinate and fumarate across the cytoplasmic membrane	3	0.14
	Starch-binding protein Bind and transport starch		1	0.07
	Collagen-binding protein	Bind and transport collagen	1	0.04
	Others	Molecular chaperone, receptor, etc	8	Various
Cellular metabolism			3 3 1 1 8 36 5	
	Glutamate dehydrogenase	Convert glutamate to oxoglutarate. NH ₄ ⁺ is released through the reaction	5	1.38
	Flagellin protein	Structural protein that forms the major portion of flagellar filaments	5	0.39
	Transcriptional regulator	Regulate transcription from DNA to RNA	5	0.39
	Cytochrome c	Coupling factor for hydrogenase	2	0.16
	Others	ATP synthase, DNA polymerase, etc.	19	Various

Task 4: Identification of enzymes secreted by bacteria-conc.

Category	Protein name	Function	# of protein family	Abundance
Substrate utilization			24	
	Iron hydrogenase	Catalyze the reversible reaction of hydrogen to hydrogen ion	2	0.48
	Glucokinase	Phosphorylate glucose to glucose-6-phosphate	1	0.13
	Sulfite reductase	Reduce sulfite	3	0.11
	Rhamnulokinase		1	0.08
		Phosphorylate rhamnulose to rhamnulose 1-phosphate		
	Glycoside hydrolase	Assist in the hydrolysis of glycosidic bonds in complex sugars	1	0.05
	Others	Various	16	Various
Oxidative stress			10	
	Rubrerythrin	May reduce hydrogen peroxide	1	1.27
	Ssuperoxide dismutase	Reduce superoxide	3	0.22
	Peroxidase	Reduce peroxide	1	0.21
	Others	Oxidoreductase	5	Various
Hypothetical proteins	Various	Unknown	37	Various

	Protein name	Function	# of protein family	Abundance
Related to methane production			40	
	Methyl-coenzyme M reductase (Mcr)	Catalyze methane formation for all methanogens	7	5.09
	$Methanol-5-hydroxy benzimidazolyl cobamide\ methyl transferase$	Reduce methanol to methane	5	0.56
	Methylene tetrahydromethanopterin dehydrogenase (Mtd)	H ₂ forming for CO ₂ reduction	2	0.75
	Methylene tetrahydromethanopterin reducatase (Mer)	The fifth enzyme in CO ₂ reduction	3	0.13
	Formyl-methanofuran dehydrogenase (Fmd)	The first enzyme in CO ₂ reduction	2	0.13
	Formate dehydrogenase (Fdh)	Enable cells to utililze formate as electron donor		
	Acetyl-CoA synthase	Allow growth on acetate as sole source of carbon and energy	2	0.12
	Disulfide reductase	Catalyze the final step of methane production	3	0.18
		Converts coA to Acetyl-CoA. Important for cell	1	0.06
	Phosphotransacetylase	growth on acetate	1	1.33
	Acetate kinase	Acetate utilization	1	0.1
	Sulfite reductase	Convert sulfite to sulfide for energy production	1	1.37
	Methyltransferase	Reduce methanol to methane	2	0.64
	Others	Electron transport	10	Various
Cellular metabolism			30	
	Deoxyribonuclease	DNA degradation	1	1.77
	Proteasome subunit alpha	Protein degradation	2	0.73
	Pyridoxamine 5-phosphate oxidase	de novo synthesis of pyridoxine (vitamin B6) and pyridoxal phosphate.		
			1	0.71
	Effector protein	Elongation factor in protein biosynthesis	1	0.54
	Aspartate carbamoyltransferase	Nucleotide transport and metabolism	1	0.27
	NADP-dependent alcohol dehydrogenase	Catalyze the reversible oxidation of secondary and cyclic alcohols to the corresponding ketones		
	Others	Various	1 23	0.25 Various
Category	Protein name	Function	# of protein	Abundance
Oxidative stress response			6	
	Thioredoxin	Reduce hydrogen peroxide and certain radicals		2.25
	Superoxide dismutase	Reduce peroxide	1	2.27
			_	
			2	0.19
	Universal stress protein	Resist stress	2	0.29
Substants forms			2	
Substrate transport	Universal stress protein	Resist stress	2	0.29
Substrate transport	Universal stress protein	Resist stress	2	0.29 0.26
Substrate transport	Universal stress protein Heat shock protein	Resist stress Resist heat shock Use ATP hydrolysis to drive the transport of protons	2 1 5	0.29
Substrate transport	Universal stress protein Heat shock protein V-type ATP synthase subunit B	Resist stress Resist heat shock Use ATP hydrolysis to drive the transport of protons across a membrane Part of a self-assembling proteinaceous surface (5-)	2 1 5	0.29 0.26
Substrate transport	Universal stress protein Heat shock protein V-type ATP synthase subunit B Chain A, Crystal Structure Of The C-Terminal Duf1608 Domain ABC-type Fe3+-hydroxamate transport system, periplasmic component ABC transporter substrate-binding protein	Resist stress Resist heat shock Use ATP hydrolysis to drive the transport of protons across a membrane Part of a self-assembling proteinaceous surface (S-) layer Vitamin B12 bining protein for ABC transport ATP-binding cassette transporters	2 1 5	0.29 0.26
Substrate transport	Universal stress protein Heat shock protein V-type ATP synthase subunit B Chain A, Crystal Structure Of The C-Terminal Duf1608 Domain ABC-type Fe3+-hydroxamate transport system, periplasmic component	Resist stress Resist heat shock Use ATP hydrolysis to drive the transport of protons across a membrane Part of a self-assembling proteinaceous surface (S-) layer Vitamin B12 bining protein for ABC transport	2 1 5	0.29 0.26 1.33 0.94
Substrate transport Hypothetical proteins	Universal stress protein Heat shock protein V-type ATP synthase subunit B Chain A, Crystal Structure Of The C-Terminal Duf1608 Domain ABC-type Fe3+-hydroxamate transport system, periplasmic component ABC transporter substrate-binding protein Basic membrane protein	Resist stress Resist heat shock Use ATP hydrolysis to drive the transport of protons across a membrane Part of a self-assembling proteinaceous surface (S-) layer Vitamin B12 bining protein for ABC transport ATP-binding cassette transporters Cell surface binding protein	2 1 5	0.29 0.26 1.33 0.94 0.17 0.1
	Universal stress protein Heat shock protein V-type ATP synthase subunit B Chain A, Crystal Structure Of The C-Terminal Duf1608 Domain ABC-type Fe3+-hydroxamate transport system, periplasmic component ABC transporter substrate-binding protein Basic membrane protein	Resist stress Resist heat shock Use ATP hydrolysis to drive the transport of protons across a membrane Part of a self-assembling proteinaceous surface (S-) layer Vitamin B12 bining protein for ABC transport ATP-binding cassette transporters Cell surface binding protein	2 1 5	0.29 0.26 1.33 0.94 0.17 0.1 0.11
	Universal stress protein Heat shock protein V-type ATP synthase subunit B Chain A, Crystal Structure Of The C-Terminal Duf1608 Domain ABC-type Fe3+-hydroxamate transport system, periplasmic component ABC transporter substrate-binding protein Basic membrane protein	Resist stress Resist heat shock Use ATP hydrolysis to drive the transport of protons across a membrane Part of a self-assembling proteinaceous surface (S-) layer Vitamin B12 bining protein for ABC transport ATP-binding cassette transporters Cell surface binding protein	2 1 5	0.29 0.26 1.33 0.94 0.17 0.1 0.11
	Universal stress protein Heat shock protein V-type ATP synthase subunit B Chain A, Crystal Structure Of The C-Terminal Duf1608 Domain ABC-type Fe3+-hydroxamate transport system, periplasmic component ABC transporter substrate-binding protein Basic membrane protein Hypothetical protein Hypothetical protein	Resist stress Resist heat shock Use ATP hydrolysis to drive the transport of protons across a membrane Part of a self-assembling proteinaceous surface (S-) layer Vitamin B12 bining protein for ABC transport ATP-binding cassette transporters Cell surface binding protein Unknown	2 1 5	0.29 0.26 1.33 0.94 0.17 0.1 0.11 6.27 1.14
	Universal stress protein Heat shock protein V-type ATP synthase subunit B Chain A, Crystal Structure Of The C-Terminal Duf1608 Domain ABC-type Fe3+-hydroxamate transport system, periplasmic component ABC transporter substrate-binding protein Basic membrane protein Hypothetical protein Hypothetical protein Hypothetical protein	Resist stress Resist heat shock Use ATP hydrolysis to drive the transport of protons across a membrane Part of a self-assembling proteinaceous surface (S-) layer Vitamin B12 bining protein for ABC transport ATP-binding cassette transporters Cell surface binding protein Unknown Unknown	2 1 5	0.29 0.26 1.33 0.94 0.17 0.1 0.11

Task 4: Identification of enzymes secreted by archaea

Category	Protein name	Function	# of protein family	Abundance
Related to methane produc	ction		40	
	Methyl-coenzyme M reductase (Mcr)	Catalyze methane formation for all methanogens	7	5.09
	$Methanol-5-hydroxy benzimidazolyl cobamide\ methyl transferase$	Reduce methanol to methane	5	0.56
	Methylene tetrahydromethanopterin dehydrogenase (Mtd)	H ₂ forming for CO ₂ reduction	2	0.75
	Methylene tetrahydromethanopterin reducatase (Mer)	The fifth enzyme in CO ₂ reduction	3	0.13
	Formyl-methanofuran dehydrogenase (Fmd)	The first enzyme in CO2 reduction	2	0.09
	Formate dehydrogenase (Fdh)	Enable cells to utililze formate as electron donor	2	0.12
	Acetyl-CoA synthase	Allow growth on acetate as sole source of carbon and energy	3	0.18
	Disulfide reductase	Catalyze the final step of methane production	1	0.06
	Phosphotransacetylase	Converts coA to Acetyl-CoA. Important for cell growth on acetate		
			1	1.33
	Acetate kinase	Acetate utilization	1	0.1
	Sulfite reductase	Convert sulfite to sulfide for energy production		1 27
	Methyltransferase	Reduce methanol to methane	1 2	1.37 0.64
	Others	Electron transport	10	Various
Cellular metabolism			30	various
	Deoxyribonuclease	DNA degradation	1	1.77
	Proteasome subunit alpha	Protein degradation	2	0.73
	Pyridoxamine 5-phosphate oxidase	de novo synthesis of pyridoxine (vitamin B6) and pyridoxal phosphate.		
			1	0.71
	Effector protein	Elongation factor in protein biosynthesis	1	0.54
	Aspartate carbamoyltransferase	Nucleotide transport and metabolism	1	0.27
	NADP-dependent alcohol dehydrogenase	Catalyze the reversible oxidation of secondary and cyclic alcohols to the corresponding ketones		
			1	0.25
	Others	Various	23	Various

Task 4: Identification of enzymes secreted by archaea-con.

Category	Protein name	Function		Abundance
Oxidative stress respon	nse		family 6	Abundance
•	Thioredoxin	Reduce hydrogen peroxide and		
	1 moredoxin	certain radicals	1	2.27
	Superoxide dismutase	Reduce peroxide	2	0.19
	Universal stress protein	Resist stress	2	0.29
	Heat shock protein	Resist heat shock	1	0.26
Substrate transport			5	
	V-type ATP synthase subunit B	Use ATP hydrolysis to drive the transport of protons across a membrane	1	1.33
	Chain A, Crystal Structure Of The C-Terminal Duf1608 Domain	Part of a self-assembling proteinaceous surface (S-) layer	1	0.94
	ABC-type Fe3+-hydroxamate transport system, Vitamin B12 bining protein for periplasmic component ABC transport	~ .	1	0.17
	ABC transporter substrate-binding protein	ATP-binding cassette transporters	1	0.1
	Basic membrane protein	Cell surface binding protein	1	0.11
Hypothetical proteins			18	
	Hypothetical protein	Unknown	1	6.27
	Hypothetical protein	Unknown	1	1.14
	Hypothetical protein	Unknown	1	1.2
	Hypothetical protein	Unknown	1	1.1
	Others	Unknown	14	Various

Sakai S, Takaki Y, Shimamura S, Sekine M, et al. (2011) Genome Sequence of a Mesophilic Hydrogenotrophic Methanogen Methanocella paludicola, the First Cultivated Representative of the Order Methanocellales. PLoS ONE 6(7): e22898. doi:10.1371/journal.pone.0022898.

Results

- Major compounds from coal depolymerization may be: sugars, amino acids, starch and collagen like chemicals, acetate, formate, C-4 carboxylates, etc.
- Bacterial species produced a significant amount of membrane proteins for substrate binding and transport, flagella proteins for cell movement and oxidoreductases for fighting against oxidative stress due to air exposure.
- For archaea strains, 41% of proteins were related to methane production
- We have identified major enzymes involved in methane production pathway, such as: Methyl-coenzyme M reductase (Mcr); Methanol-5hydroxybenzimidazolylcobamide methyltransferase; Methylene tetrahydromethanopterin dehydrogenase (Mtd); Formyl-MFR dehydrogenase (Fmd); Formate dehydrogenase (Fd); Acetate kinase; Methyltransferase, etc.

Estimation of Surface Areas of Coal Residue

- Change in surface areas are estimated by change in the Langmuir Volume.
 - CH₄ sorption surface area:
 - ✓ Day 30 area = $1.5957 \times Baseline$ area
 - ✓ Day 60 area = $4.45 \times \text{Baseline}$ area
 - CO₂ sorption surface area:
 - ✓ Day 30 area = $1.4143 \times \text{Baseline}$ area
 - ✓ Day 60 area = $2.21 \times \text{Baseline}$ area

Task 1.0: Project management

Personnel involved

- Dr. Yanna Liang (PI)
- Dr. Satya Harpalani (Co-PI)
- Dr. Stephen Park (Postdoc, starting on Dec. 1st, 2014)
- Ji Zhang (Graduate student)
- Rohit Pandey (Graduate student)
- Zeying Zhu (Undergraduate student)

Task 2.0, Subtask 2.1: Identify a simple medium recipe Minerals ACS certified Fisher price \$ per liter

Cost of one liter medium

Minerals	ACS certified Fisher price (\$)	\$ per liter
NaHCO ₃	694.43/300lb	0.0428
Yeast extract	382.85/5kg	0.1531
Trypticase peptones	2303.27/25lb	0.4059
Mercaptoethanesulfonic acid	144.97/25g	0.0029
Na ₂ S.9H ₂ O	260.27/2.5kg	0.0260
NH ₄ CL	311.64/10kg	0.0312
K ₂ HPO ₄ .3H ₂ O	1003.2/10kg	0.0401
MgCl ₂ .6H ₂ O	786.45/12kg	0.0655
CaCl ₂ .2H ₂ O	146.78/2.5kg	0.0235
Resazurin	156.8/25g	0.0063
		0.7973
Trace Mineral Solution	ACS certified Fisher price (\$)	\$ per liter
NaEDTA.2H ₂ O	1091.4/10kg	0.0005457
CoCl ₂ .6H ₂ O	290.24/500g	0.00087072
MnCl ₂ .4H ₂ O	238.34/2.5kg	9.5336E-05
FeSO _{4.} 7H ₂ O	694.45/10kg	6.9445E-05
ZnCl ₂	1679.9/50kg	3.3598E-05
AICI ₃ .6H ₂ O	197.21/2.5kg	3.1554E-05
Na ₂ WO ₄ .2H ₂ O	225.99/500g	0.00013559
CuCl	171.12/2.5kg	1.369E-05
Ni ₂ SO ₄ .6H ₂ O	710.09/5 kg	2.8404E-05
H ₂ SeO ₃	192.9/250g	0.00007716
H_3BO_3	543.56/10kg	5.4356E-06
Na ₂ MoO ₄ .2H ₂ O	478.65/2.5kg	1.9146E-05
		0.0019

First exp.: Methane production. Microbial consortium after eight transfers

CO₂ release, Microbial consortium after eight transfers

Exp. 2: Methane production, newly adapted cells

CO2 release, newly adapted cells

Evaluate substitutes for yeast extract and peptone

No	Medium	Coal (g)	Cells (ml)	Medium + broth or liquor (ml)
1	MS medium	9	4.5	40.5
2	MS medium	9	4.5	40.5
3	MS medium, without TE, YE, Peptone, but with 50% of trypticase soy broth	0	4.5	40.5
4	MS medium, without TE, YE, Peptone, but with 50% of trypticase soy broth	0	4.5	40.5
5	MS medium, without TE, YE, Peptone, but with 50% of corn steep liquor	0	4.5	40.5
6	MS medium, without TE, YE, Peptone, but with 50% of corn steep liquor	0	4.5	40.5
7	MS medium, without TE, YE, Peptone, but with 10% of trypticase soy broth	9	4.5	40.5
8	MS medium, without TE, YE, Peptone, but with 10% of trypticase soy broth	9	4.5	40.5
9	MS medium, without TE, YE, Peptone, but with 30% of trypticase soy broth	9	4.5	40.5
10	MS medium, without TE, YE, Peptone, but with 30% of trypticase soy broth	9	4.5	40.5
11	MS medium, without TE, YE, Peptone, but with 50% of trypticase soy broth	9	4.5	40.5
12	MS medium, without TE, YE, Peptone, but with 50% of trypticase soy broth	9	4.5	40.5
13	MS medium, without TE, YE, Peptone, but with 10% of corn steep liquor	9	4.5	40.5
14	MS medium, without TE, YE, Peptone, but with 10% of corn steep liquor	9	4.5	40.5
15	MS medium, without TE, YE, Peptone, but with 30% of corn steep liquor	9	4.5	40.5
16	MS medium, without TE, YE, Peptone, but with 30% of corn steep liquor	9	4.5	40.5
17	MS medium, without TE, YE, Peptone, but with 50% of corn steep liquor	9	4.5	40.5
18	MS medium, without TE, YE, Peptone, but with 50% of corn steep liquor	9	4.5	40.5

Task 1.0, Subtask 1.2: Characterize the coal samples

Elemental analysis

Sample name	Weight (mg)	Nitrogen %	Carbon %	Hydrogen %	Sulphur %	Oxygen %
Baseline Rep 1	2.033	1.399	70.319	5.234	0.646	15.269
Baseline Rep 2	3.501	1.381	69.816	5.190	0.609	15.408
Average		1.399	70.319	5.234	0.646	15.408
STDEV		0.013	0.356	0.031	0.026	0.197

Moisture content: 11.54%

Ash content: 6.11%

Dry ash free: $CH_{0.074}O_{0.22}N_{0.02}S_{0.009}$

Heat content: 12529.88 Btu/lb

Project outcomes

- One presentation was given by Ji Zhang at Mid-American Environmental Engineering Conference at Rolla, MO on Nov. 15th, 2014.
- One manuscript titled: "Characterizing microbial communities dedicated for converting coal to methane in situ and ex situ" is ready for submission to International Journal of Coal Geology.

Summary

- Subtask 1.1: Medium reduction is on-going.
- Subtask 1.2: Proximate analysis regarding fixed carbon is on-going.
- Evaluate methods for long-term storage of the adapted microbial consortium.
- Task 7.0: TEA analysis of the baseline data through using Aspen plus is ongoing.

Questions, Comments, Suggestions