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“mm Benefit to the Program
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« Goal: Develop new capabilities for carbon
sequestration modeling in fractured reservoirs
through improvements in the representation of
fracture-matrix flow interactions.

» Support industry’s ability to predict CO, storage
capacity in geologic formations to within 30
percent.



] Project Objectives

* Develop new models for interactions of
fracture and matrix flow

* Incorporate those models into reservoir-
scale simulators

« Conduct sensitivity analyses of trapping

efficiency and storage capacity using new
model

* Apply new model to In Salah site



" Project Overview

 Dual-continuum models

* Transfer functions
— Gravity drainage
— Spontaneous imbibition
» Sensitivity analysis
* Vertically-integrated approach
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“mm The Dual-Continuum Model
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— Conceptual approach

TF

TF

TF

TF

F = Fracture grid-block
M = Matrix grid-block

TF = Transfer function



Em Fracture/Matrix Interaction

Spontaneous Fluid
Imbibition Compression
Gravity Molecular
Displacement Diffusion
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CO, Storage Context

CO, Injection Phase:
Drainage Process

Fracture filled with supercritical
CO, (non-wetting phase)

Post Injection Phase:
Imbibition Process

Rock matrix filled with
supercritical CO, (non-wetting
phase)
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CO, INDECTION PHASE
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“En Drainage Model
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= First-Order Model

Veo, = Vi, (1 — e ™0)

= Dimensional analysis of the 1D fractional-flow
equation provides estimate for the characteristic
timescales: thy, thes oy

T = (1 - %) (tpy +1t0,) + (%) (to,)
 Apgl

with ratio of gravitational to capillary forces: r = 2
e
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Drainage curves comparison
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POST INJECTION PHASE
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Brine imbibition hybrid model
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SENSITIVITY ANALYSIS
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mm Vertical block connectivity
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* 10 matrix blocks (3.9 mx2 m) and 11 fractures
(1 mm)

» Fixed gas pressure + saturation from 2 side
fractures

« Three matrix block connectivities:

— Fully-separated matrix blocks (sugar
cubes)

— No horizontal fractures (match sticks)
— Partial connectivity (mix of the two above)
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VERTICALLY-INTEGRATED
APPROACH
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- Vertically integrated model

* Vertical segregation is fast in the fractures

* Two approaches:

— Dual-porosity with vertical equilibrium in
fractures

— Dual-permeability with vertical equilibrium In
fractures and dynamic reconstruction in matrix
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“mm VI dual-porosity model
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= Conclusions

* Hybrid transfer functions for both initial
iInvasion of CO,, Into matrix and later
displacement by brine without tuning
parameters

* Matrix block connectivity Is important for
storage behavior of fractured reservoirs

* CO, and brine migration In fractured
reservoirs can be modeled using a vertically-
Integrated approach
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“mm Accomplishments to Date
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« Development of hybrid transfer function for dual-
porosity model for both spontaneous imbibition and
gravity drainage

* Implemented and validated single- and two-phase

dual-porosity modules and a hysteresis module for
MRST

« Updated TOUGHZ2/ECO2N simulator for better
performance for CO, storage in fractured media
simulations
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“mm Accomplishments to Date
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Investigated the impact of matrix block connectivity
on CO, storage capacity

Developed analytic solutions for CO, storage due
to diffusion of dissolved CO,

Developed and implemented a vertically-integrated
dual-porosity model

Investigated development of vertically-integrated
dual-permeability model
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@ Synergy Opportunities

 The modeling approaches developed In
this project should be useful to other
projects studying carbon seqguestration Iin
fractured formations
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= Future Plans

Implement the new transfer functions into
TOUGH2, MRST and vertically-integrated
simulator

Continue development of vertically-integrated dual-
porosity and dual-permeability models

Continue to investigate the impact of fracture and
matrix block parameters on CO, storage capacity

Apply newly developed modeling approaches to In
Salah site
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THANK YOU!

Karl Bandilla
Princeton University
bandilla@princeton.edu

28



A
feeeeee "'I

BERKELEY LAB

HERIOT
WATT

UNIVERSITY

Appendix
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=3 Organization Chart

Project PI
Prof. M. Celia
(Princeton)

Project co-PI Project co-PI Project co-PI Project co-PI
Dr. K. Bandilla Prof. S. Geiger Dr. F. Doster Dr. Q. Zhou
(Princeton) (Heriot-Watt) (Heriot-Watt) (LBNL)
l | | |

DFM Simulations & MR-
DBDP Development
Prof. S. Geiger

Development of Vertically-
Integrated Fractured
Reservoir Simulator

Implementation of MR-
DBDP into TOUGH2

Prof. M. Celia D Dokt Dr. Q. Zhou
Dr. K. Bandilla L (LBNL)
) (Heriot-Watt)
(Princeton)
DFM Simulations of MR- Model Application and
DBDP into MRST Sensitivity Analysis
Prof. S. Geiger Dr. Q. Zhou
Dr. F. Doster Dr. J. Birkholzer

(Heriot-Watt) (LBNL)
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B3 Gantt Chart

light grey: accomplished; dark grey: planned; MS: mile stone

Fiscal Year BP 1
Quarter 1 2 3 4 1 2

Task 1: Project Management, Planning and Reporting

Subtask 1.1: Updated Project Management Plan MS

Subtask 1.2: Project Planning and Reporting MS

Task 2.0: Detailed DFM modeling of CO2 and brine MS

Task 3.0: Development of MR-DBDP model with analytic transfer function MS

Task 4.0: Development of new simulator capabilities

Subtask 4.1: Development of vertically integrated simulator MS

Subtask 4.3: incorporate new MR-DBDP into TOUGH2

Task 5.0: Model demonstration and sensitivity analysis

Subtask 5.4: Investigation of injection scenarios

Task 6.0: Simulator application to In Salah

Subtask 6.3: Sensitivity analysis
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