

A Joint Experimental/Computational Study of Non-idealities in Practical Rotating Detonation Engines

PI: Mirko Gamba

Co-I: Venkat Raman

Department of Aerospace Engineering University of Michigan

Kickoff meeting October 5, 2015 UTSR/NETL

Summary

• Title:

 A Joint Experimental/Computational Study of Non-idealities in Practical Rotating Detonation Engines

• Funding agency:

- University Turbine Systems Research/NETL
- Funding Opportunity Number: DE-FOA-0001248
- Topic Area 2: Pressure Gain Combustion R&D
- Project manager: David Lyons

• Personnel:

- PI: Mirko Gamba, University of Michigan
- Co-I: Venkat Raman, University of Michigan
- Students currently involved:
 - Fabian Chacon
 - Yasin Abul-Huda
 - TBD
- Key external collaborators:
 - Dr. John Hoke, Innovative Scientific Solution, Inc. (ISSI)
 - Drs. Adam Holley and Peter Cocks, United Technology Research Center (UTRC)
 - Dr. K. Kailasnath, Navy Research Labs (NRL)

Outline

- Programmatic overview
- Introduction to the problem and general approach
- Experimental activities
- Computational activities
- Interactions and collaborations

Outline

- Programmatic overview
- Introduction to the problem and general approach
- Experimental activities
- Computational activities
- Interactions and collaborations

Overarching objectives

• Objective 1:

Develop canonical and operational RDE configurations, as well as imaging-based laser diagnostics for understanding fuel stratification, leakage, parasitic combustion and detonation structure under nonideal conditions in RDEs.

• Objective 2:

Develop a comprehensive picture of the fundamental physics governing non-idealities and how they impact RDE performance and operability from both experiments and simulations.

• Objective 3:

Develop detailed computational tools (DNS & LES) for studying detonation wave propagation processes in RDEs.

Expected outcomes

• Outcome 1:

Identify the sources and properties of non-idealities in RDEs, their contribution to loss in pressure gain, and potential design limitations

• Outcome 2:

Detailed experimental tools and measurements (databases) about fundamental aspects of RDEs will become available to the RDE design community.

-e.g., transfer of techniques and data to UTRC, ISSI, NRL

• Outcome 3:

Detailed computational tools (DNS/LES) as well as combustion models with detailed chemistry for pressure gain combustion will be made available to the RDE design community.

- -e.g., openFoam development of RDE modeling
- -e.g., transfer of detonation computational models to UTRC, ISSI, NRL

Objectives and tasks

Objectives and tasks

Timeline of the project

	Task	Name	Start	Finish		2016				2017				2018		
Task 1					Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
IOSK I	1.0	Project meeting and planning	10/15	09/18												
Task 2	1.1	Project meetings and progress report	10/15	09/18												
	2.0	Study of non- idealities in detonation waves	10/15	12/17												
	2.1	Mixing study due to injection and shock interaction	10/15	12/16												
Task 3	2.2	Detonation wave structure	04/16	12/17												
	3.0	RDE performance and operability under non-idealities	10/15	09/18												
	3.1	Effects on non- idealities in RDE operability	10/16	09/18												
Task 4	3.2	Effect of fuel reactivity and non-idealities	07/16	09/18												
	4.0	Develop LES combustion models for detonations	10/15	09/18												
	4.1	DNS for turbulent detonation	10/15	12/16												
	4.2	DNS replicating detonation in linearized RDE	04/16	06/17												
	4.3	LES models for turbulent detonation	07/18	09/17												
	4.4	LES analysis of RDE performance	04/18	09/18												

Outline

- Programmatic overview
- Introduction to the problem and general approach
- Experimental activities
- Computational activities
- Interactions and collaborations

Overview of RDE operation and Pressure Gain (PG)

Thermodynamics of RDE and Pressure Gain

(Some) Practical challenges

- Detonation initiation
- Detonation sustainment
- Produce and maintain pressure gain
- Injector design
 - Mixing, minimize pressure drop, prevent back-flow
- Integration with turbomachinery (compressor/turbine) ullet
 - Unsteady operation
- (High-frequency) unsteady loads (mechanical/thermal)

Non-idealities and loss of pressure gain

Detonation non-idealities

- Incomplete fuel/air mixing
- Fuel/air charge stratification
- Mixture leakage (incomplete heat release)
- – Parasitic combustion:
 - Premature ignition (e.g., burnt/unburnt interface)
 - Stabilization of deflagration (flame)
- Detonation-induced flow instabilities
 - Richtmyer-Meshkov (R-M) instability
 - Kelvin-Helmholtz (K-H) instability
- They lead to loss in pressure gain
 - Linked to loss of detonation propagation
- Additional losses exist during flow expansion
 - Secondary shock and (multiple) oblique shock
 - Flow instabilities (e.g., K-H instability)
 - Mixture leakage through burn/unburnt interface

Past/current analysis/investigation approach

- Past/current approach is based on global performance assessment
- Experimentally:
 - -Global performance assessment
 - Low-fidelity and/or global metrics
 - Pressure measurements
 - Luminosity-based analysis (optical access is a challenge!)
 - Parametric study
 - Variation with flow rate, (global) equivalence ratio, fuel, pressure
 - Injector design / annulus / exhaust flowpath testing
- Prediction/computation
 - Euler solver or limited viscous effects modeling
 - One-dimension, perfect mixture
 - Single-step reaction
 - Induction-time based combustion models
 - Neglect mixing, three-dimensional viscous effects and turbulence

Our approach: a multi-level physics study

Outline

- Programmatic overview
- Introduction to the problem and general approach
- Experimental activities
- Computational activities
- Interactions and collaborations

Experimental multi-level approach

RDE full system:

- Link between mixing and performance
- Design from ISSI/AFRL

Linearized analogue:

- Detonation structure
- Detonation/turbulence interaction
- Detonation in stratified mixtures
- Design from ISSI/AFRL

Single or multiple injectors:

- Mixing studies
- Shock-induced mixing
- Our starting point

Shock-induced mixing: detonation/shock analogy

Detonation

Shock analogy

Scaling of detonation/shock analogy

Scaling of detonation/shock analogy

- Flexible configuration
 - Single isolated injector
 - Multiple isolated injectors
 - Confined multiple injectors
 - Different injector configurations can be tested conveniently
- Well-suited for controlled unitphysics experiments
 - Quantitative mixing measurements
 - Flexibility in range of conditions
 - Shock strength
 - Injection details (speed, configuration, molecular weight)
 - What learnt here can be extended to the linearized RDE

- Flexible configuration
 - -Single isolated injector
 - Multiple isolated injectors
 - Confined multiple injectors
 - Different injector configurations can be tested conveniently
- Well-suited for controlled unitphysics experiments
 - Quantitative mixing measurements
 - Flexibility in range of conditions
 - Shock strength
 - Injection details (speed, configuration, molecular weight)
 - What learnt here can be extended to the linearized RDE

- Flexible configuration
 - Single isolated injector
 - Multiple isolated injectors
 - Confined multiple injectors
 - Different injector configurations can be tested conveniently
- Well-suited for controlled unitphysics experiments
 - Quantitative mixing measurements
 - Flexibility in range of conditions
 - Shock strength
 - Injection details (speed, configuration, molecular weight)
 - What learnt here can be extended to the linearized RDE

- Flexible configuration
 - -Single isolated injector
 - Multiple isolated injectors
 - Confined multiple injectors
 - Different injector configurations can be tested conveniently
- Well-suited for controlled unitphysics experiments
 - Quantitative mixing measurements
 - Flexibility in range of conditions
 - Shock strength
 - Injection details (speed, configuration, molecular weight)
 - What learnt here can be extended to the linearized RDE

- Flexible configuration
 - -Single isolated injector
 - Multiple isolated injectors
 - Confined multiple injectors
 - Different injector configurations can be tested conveniently
- Well-suited for controlled unitphysics experiments
 - Quantitative mixing measurements
 - Flexibility in range of conditions
 - Shock strength
 - Injection details (speed, configuration, molecular weight)
 - What learnt here can be extended to the linearized RDE

- Flexible configuration
 - -Single isolated injector
 - Multiple isolated injectors
 - Confined multiple injectors
 - Different injector configurations can be tested conveniently
- Well-suited for controlled unitphysics experiments
 - Quantitative mixing measurements
 - Flexibility in range of conditions
 - Shock strength
 - Injection details (speed, configuration, molecular weight)
 - What learnt here can be extended to the linearized RDE

Interaction of shock wave with turbulent jet

M = 1.39

- Detonation-induced mixing analogue
- Visualization data
 - -100 kHz movie with 300 ns exposure (shock smears by 0.13 pixel)
 - Injection of H₂ into still air subject to a Mach 1.39 shock wave
 - Played back at 5 frames/second
 - Elapsed time 0.5 ms (50 frames)

Interaction of shock wave with turbulent jet

Experimental multi-level approach

RDE full system:

- Link between mixing and performance
- Design from ISSI/AFRL

Linearized analogue:

- Detonation structure
- Detonation/turbulence interaction
- Detonation in stratified mixtures
- Design from ISSI/AFRL

Single or multiple injectors:

- Mixing studies
- Shock-induced mixing
- Our starting point

Suite of diagnostic techniques for the study of RDE physics

- Traditional techniques:
 - Pressure, heat flux, flame chemiluminescence
 - Schlieren imaging
- Laser-based imaging diagnostics:
 - Planar laser-induced fluorescence (PLIF) mixing and flame marker
 - Two-color toluene PLIF thermometry and mixing (non-reacting) imaging
 - OH/CH₂O/CH/NO PLIF imaging
 - e.g., Simultaneous OH/CH₂O PLIF imaging for flame structure and heat release distribution study in premixed combustion
 - Rayleigh scattering imaging (thermometry in reacting flows)
- Some examples follow

Simultaneous OH/CH₂O PLIF imaging in inverted oxy-fuel coaxial non-premixed CH₄ flames

Mixing and combustion measurements in compressible turbulence

Study of transverse jets in supersonic crossflow - reacting

Mixing and combustion measurements in compressible turbulence

Study of transverse jets in supersonic crossflow – non-reacting mixing using toluene PLIF thermometry

LIF signal

Bow shock

10

15

Acoustic waves

20

Plume

30

Wake

25

Flame structure in scramjet model, (H2/air at ϕ = 0.23) Flowpath schematic 5.300 ms Schlieren 4.3h 13.8h Long exposure OH* Shock/boundary layer interaction as a flameholding mechanism? **OH PLIF imaging** 52
Outline

- Programmatic overview
- Introduction to the problem and general approach
- Experimental activities
- Computational activities
- Interactions and collaborations

Computational issues in RDEs

- RDEs driven by strong discontinuities
 - Shocks, pressure jumps, strong velocity gradients
 - Numerically challenging
- Coupling to turbulence and inhomogeneities
 - Small-scale gradients in concentration, temperature etc.
 - Ability to capture strong jumps and small-scale features
 - Low dispersion and dissipation in numerical tools
- Combustion modeling

- How to describe combustion in detonation-based devices?

Numerical capabilities

- Prior work in high-speed shock-containing flows
 - Low dispersion numerics
 - Near-shock resolution using specialized non-oscillatory schemes
 - Central schemes to preserve turbulent kinetic energy away from shock
 - Shock region determined using numerical "sensors"
 - Strain rates and pressure gradients used as sensors

Current focus

- Need to use complex geometries to model injectors
 Need unstructured and complex mesh capabilities
- Current work
 - Move solvers to open source framework
 - Ability to directly import CAD files
 - Easily portable across machines
 - Most importantly, can be easily shared with researchers
 - No IP issues on code transfer
 - Preliminary solvers developed using NETL-funded work

OpenFOAM capabilities

- Used for low-speed reacting flows
 - Multiple combustion models implemented
 - Ability to handle detailed chemical kinetics
 - Tested for Euler-type high-speed flows
 - Currently being ported to Siemens Inc.; Collaborations with GE and Rolls Royce

Combustion modeling

- If detonation is uniform, only time-lag model is needed
 - Only valid under ideal conditions
 - Injection leads to spatially non-uniform mixing
 - Variations in fuel/air composition
 - Leads to non-uniform detonation
 - Generation of baroclinic torque and vorticity generation
 - Enhances the effect of non-uniform mixtures

Combustion modeling focus

– Develop a variable mixture ignition model

Combustion modeling focus

- Low-speed models are not accurate
 - Turbulent mixing dominated ignition

• RDEs

- Pressure-driven detonation
 - Induction time dependent on pressure response of fuel
- Response of variable equivalence ratio mixing
 - Non-uniformity in fuel-air ratio can lead to variable delays in ignition
 - Formation of cellular shock structures
 - Loss of efficiency and fuel leakage
- First approach
 - A local mixture dependent ignition time
 - Use homogeneous reactor configuration to tabulate ignition times

Additional issues

- Strong detonation waves can introduce internal energy nonequilibrium
 - Internal modes cannot be described by Boltzmann distribution
 - Strongly affects ignition and combustion processes
- Our group has been working on nonequilibrium effects through a simultaneous AFOSR-funded effort
 - Use ab-initio computational chemistry to understand effect of nonequilibrium
 - This effort will be leveraged here
 - Strong interest from NRL (Dr. Kailasnath)

External collaborations

- Initiating collaboration with NRL
 - Get input on code development
 - Provide information on nonequilibrium and combustion modeling
- University of Maryland (Prof. Yu)
 - Use existing experimental data for initial validation
 - Provides stop-gap validation data until UM experiments come online

UTRC and ISSI/AFRL

- Develop and transfer code and modeling expertise
- Interact to work on injector modeling

Outline

- Programmatic overview
- Introduction to the problem and general approach
- Experimental activities
- Computational activities
- Interactions and collaborations

Interactions, collaborations and synergies

- Strong coupling between experiments and computations
 - Model development and validation
 - Experiment design and understanding
 - Combined investigation of the physics of detonations under turbulent mixing, incomplete fuel/air mixing, stratification
- Key external collaborations
 - ISSI/AFRL (Dr. John Hoke) on RDE and linearized RDE analogue operation, performance and modeling
 - UTRC (Drs. Adam Holley and Peter Cocks) on modeling and non-ideal behavior
 - Initiating collaboration with NRL (Dr. Kailasnath) on code and combustion model development
- Other collaborations/interactions
 - University of Maryland (Prof. Yu) on initial use of existing experimental data for initial validation
 - Interested in establishing interaction with NETL (Dr. Ferguson)

Questions?