the Energy to Lead

Flue Gas Water Vapor Latent Heat Recovery for Pressurized Oxy-Combustion

Project DE-FE0025350 NETL Program Manager: Steve Markovich

Project Manager: Dexin Wang – Institute Engineer Gas Technology Institute

Project Overview

General Funding: \$2,648,945

- DOE = \$1,999,795. Cost share = \$649,150 (24.5%)
- Performance Period:
 - Sep 1 2015 Aug 31 2018
- Participants:
 - Gas Technology Institute (lead)
 - Media & Process Technology
 - Florida International University
 - SmartBurn LLC

Project Overview

Overall Project Objectives

- Facilitate energy and water recovery to improve the efficiency of pressurized oxy-coal power boilers
- Design, build, and test a high-pressure modular version of the Transport Membrane Condenser (TMC) at pilot scale to evaluate its performance and analyze the results for future commercial-scale power plants.

Technology Background

GTI developed Transport Membrane Condenser (TMC) technology

- Nanoporous ceramic membrane selectively recovers water vapor and latent heat from natural gas combustion flue gases
 - Increases boiler efficiency and saves water, avoiding corrosive condensate
- Commercialized for gas- fired industrial boilers in 2009.

Technology Background

Non-boiler industrial applications (e.g., commercial laundry)

Existing power plants (slipstream from coal-fired power boiler)

Technology Application for Pressurized Oxy-Coal boiler

- ✓ Latent heat recovery can boost power generation efficiency of pressurized oxy-coal boiler by up to 14%
- ✓ TMC can recover clean water from flue gas equal to 2.0% of steam demand
- ✓ No boiler modifications required
- ✓ Reduced dew point of flue gas

- ✓ Durability of TMC in flue gas with coal-derived contaminants (particulates, SO₂, and NO_x)
- ✓ Integrity of ceramic multi-tube sealing in pressurized TMC operation
- ✓ Controllability and performance

Approach/Scope

Experimental design

- Single TMC membrane bundle housed in a pressure vessel, connected in parallel and/or series
- 🖵 Work plan
 - Develop and build high-pressure modular version of the TMC
 - Install TMC skid at GTI's Flex Fuel Gasification Facility
 - Gasify PRB coal, combust and condition syngas to simulate exhaust from pressurized slurry-fed oxy-coal combustion with FGD at 1-3 MW_{th} scale
 - Test TMC unit in different configurations

Success criteria

- TMC performance conforms to model predictions
- TMC meets expectations for controllability and durability

Task 2: Process Modeling and Design Evaluation

Task 2.1: Process Modeling for System Design and Operation

- Model for commercial reference case is a 550-MW_e slurry feed oxy-coal boiler using PRB coal with 50% moisture
- Flue gas is recirculated from downstream of FGD

Task 2: Process Modeling and Design Evaluation

Task 2.1: Process Modeling for System Design and Operation

- Developed and updated model for 2.7-MW_{th} pilot simulation of commercial case, actual flue gas going to the TMC equivalent to 1.24MWth coal boiler flue gas
- Coal is gasified, syngas filtered, and slipstream combusted with oxygen, CO₂, water, and steam to obtain conditioned flue gas for TMC testing
- Portion of TMC water is recycled and cooled to simulate plant water supply

9

Task 2: Process Modeling and Design Evaluation

Task 2.2: CFD Simulation to Define TMC Design Parameters

- Single TMC module CFD study for different tube arrangement effect
- Baffle effect has been studied, and the 3-baffle configuration shows optimum heat and mass transfer

Task 2: Process Modeling and Design Evaluation

Task 2.2: CFD Simulation to Define TMC Design Parameters

- 6 TMC modules arranged into different series and parallel configurations based on flue gas flow
 - 3x2 (3 in series, 2 parallel sets)
 - 2x3 (2 in series, 3 parallel sets)

Task 3.1: Spaced tube bundles design, fabrication, and testing

Completed Pilot Scale TMC Membrane Bundle Fabrication

- ✓ Completed preparation of seven pilot scale TMC membrane bundles
- ✓ Dual ended potting successfully demonstrated in thermal cycling to 200° C
- ✓ Potting based upon high performance glass reinforced epoxy

TMC Bundle Fabrication Layout (4" OD x 36" Length; ca. 90 Tubes)

Finished TMC Bundles

Teflon Baffles for Shell Side Gas Flow Distribution

Task 3.2: High-Pressure Bundle Housing Design, Fabrication, and Testing

Completed Fabrication of the TMC Housing

- \checkmark Seven pilot scale TMC membrane housings were fabricated and tested
- \checkmark Membranes and modules tested to 200°C and 200 psig.

Fully Assemble TMC Module

Bundle Installed in Module

Task 3.2: High-Pressure Bundle Housing Design, Fabrication, and Testing

Bundle Test Rig and Oven

Task 3.3: TMC Test System Configuration and Control Design

15

Task 3.3: TMC Test System Configuration and Control Design

NETL Project Review Meeting – August 25, 2017

Progress & Current Status Task 4: Pressurized Oxy-Coal Pilot System Test Preparation

17

Task 4: Pressurized Oxy-Coal Pilot System Test Preparation

Task 5.1: TMC Test Skid Installation and System Configuration

19

Task 5.1: TMC Test Skid Installation and System Configuration

Task 5.1: TMC Test Skid Installation and System Configuration

Schedule Update

	Γ			BUI	OGE	ΤP	PERIOD I										BUDGET PERIOD II											
		2015					2016									2017												
Tasks	S	0	N	D	J	F	M	А	M	J	J	А	S	0	N	D	J	F	M	А	M	J	J	A	5 0	N	D	
1.0 Project Management and Planning		М1											М2														М4	
2.0 Process Modeling and Design Evaluation																												
2.1 Process Modeling for System Design																												
2.2 CFD Simulation to Define TMC Design Parameters																												
3.0 TMC Unit Design, Fabrication, and Assembly for High Pressure																												
3.1 Spaced Tube Bundles Design, Fabrication and Testing																												
3.2 High Pressure Bundle Housing Design, Fabrication and Test																												
3.3 TMC Unit Assembly and System Control Setup																												
4.0 Pressurized Oxy-Coal Pilot Test System Preparation and Modific	:6																											
4.1 Feedstocks and Raw Material Preparation																												
4.2 Test System Modifications																												
4.3 Test Plan																												
5.0 Overall Test System Installation and Shakedown																												
5.1 TMC System Installation and Control Integration with Oxy-	•																							N	13			
5.2 System Shakedown																												
6.0 System Performance Testing for Latent Heat Recovery																												
6.1 TMC Performance Test #1																												
6.2 TMC Performance Test #2																												
6.3 Result Summary and Future Development Directions																												
7.0 Scale-Up and Integration Evaluation for Commercial Scale Power	,																											
	_	P1a	an								-																	

To Date

Plans for Next Step

Testing, development, commercialization

Test, analysis, and CFD simulation

- We plan to test each of two TMC configurations for at least 24 hours at steady state conditions
- Key variables will be TMC inlet water flow rate and temperature
- Test results will be used to validate CFD modeling, which can then be applied to evaluate more configurations and operating modes
- Scale up and integration evaluation for commercial scale plant
 - Performance and Cost optimization for membrane module manufacture, TMC system design, and control;
 - Commercial plant integration study to achieve the best economy for shorter payback period.

Thanks!

Questions?

gti