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Topics and Themes 
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Topics and Themes 



Base System 
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Electric Power System 

The operation of a power generation plant must be 
understood within the context of its environment.  Most 
notably, that it is driving an electric power system with 
time varying loads and configurations that directly 
affect the operation of power generation equipment. 



Base System 
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Coal-fired Power Generation Plant 



Coal-fired Power Plant 

• Coal & ash handling 
– Handles treatment and storage of coal  
– Handles and dispose of ash 

• Steam generating 
– Creates steam for the greater percentage of power station 

in-efficiency 
• Energy conversion 

– Converts steam energy to rotational mechanical energy 
– Converts rotational mechanical energy into electrical 

energy. 
• Feed water & cooling 

– Condenses steam used in boiler chamber back to water for 
re-use 

 

Key functions 
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Measurement and Sensors 

• Pressure measurement 
– Mechanical instruments (dial gauges) 
– Electronic pressure transducers 

• Flow measurement 
– Flowrate measurement 

• Flowrate / pressure differential devices 
• Liquid filled manometers 

– Electronic differential pressure instrument 
– Magnetic induction flow measurement 
– Volumetric flow meters 

• Turbine type (widely used for centrifugal pump) 
• Gear wheel type 
• Rotary piston type 

– Flow indicators 
 

Phenomena and available instrumentation 
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Measurement and Sensors (Cont.) 

• Power Measurement 
– Torque measurement 
– Torque measurement with eddy current sensors 
– Electrical power measurement (Current and Voltage 

measurement) 
• Speed measurement 

– Mechanical tachometers 
– Impulse transmitters 
– Eddy current generators 
– Slip meters 
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Phenomena and available instrumentation 



Measurement and Sensors (Cont.) 

• Temperature measurement  

– Mechanical contact thermometers 
– Electrical contact thermometers 

• Resistance thermometers 
• Thermocouples 

• Vibration measurement 
– Accelerometers 
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Phenomena and available instrumentation 



Target System 
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Self-organizing, information centric sensor network 



Project Goals 

1. Enable robust and flexible health and condition 
monitoring systems through the development of an 
intelligent agent-based information theoretic 
architecture for advanced power plant applications. 

2. Develop self-organizing computational algorithms 
that maximize the collection, transmission, 
aggregation, and conversion of data into actionable 
information for monitoring, diagnosis, prognosis, and 
control of the power plant. 

3. Demonstrate the viability and efficacy of an agent- 
based, information-theoretic system for real-time 
health and condition monitoring of power generation 
equipment and systems.  
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Realizing the potential of next generation instrumentation systems 



Project Objectives 

• Develop the theoretical foundations and the algorithms 
necessary to elicit system structure from available 
measurements. 

• Develop the signal processing, filtering, and inference 
algorithms and software systems necessary to detect, 
diagnose, and prognose defects, degradation, and faults in 
power generation systems at component, subsystem, and 
system levels. 

• Develop algorithms and software systems that enable a 
sensor network for condition monitoring of power generation 
plants to be adaptive, resilient, and self-healing. 

• Evaluate the effectiveness of these computational algorithms 
in maximizing information extracted from power plant data 
and realizing its value for condition monitoring using a power 
plant simulation test bed.  
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Realizing a sensor network for health and condition monitoring 



Technical Approach 

• System elements are considered as nodes in a 
communication network; 
– Elements send “messages” via physical media to other 

system elements, 
– Elements “process” messages from other elements and 

alter their states accordingly. 
• Instrumentation provides a means for accessing some 

of these “messages”; 
– Messages may be corrupted, 
– Not all messages can be observed directly. 

• Proper understanding of observations requires an 
understanding of both the processing and the network 
topology! 
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Systems viewed as communication networks 



Information Theory 

• Information is the amount of surprise 
contained in the data; 
– Data that tells you what you already know is not 

informative, 
– Not all data is created equal. 

• The fundamental measure of information is 
Shannon entropy: 
 
where X 2 X  is a discrete R.V., X is a finite 
set known as the alphabet, and                       .  
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Data and Information are not the same! 

H(X) = ¡
X

x2X

p(x) logd p(x);

p(x) = PrfX = xg



The Multivariate Case 

• For a pair of discrete R.V.’s (X,Y) with joint and 
conditional distributions p(x,y) and p(x|y), the joint and 
conditional entropies are, respectively: 

 
 

• The relationship between these R.V.’s is captured by 
Mutual Information: 
 

• These quantities are related via the chain rule: 
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The Calculus of Information 

H(X; Y ) = ¡
X

x2X

X

y2Y

p(x; y) log2 p(x; y)

H(XjY ) = ¡
X

x2X

X

y2Y

p(x; y) log2 p(xjy)

I(X; Y ) =
X

x2X

X

y2Y

p(x; y) log2

p(x; y)

p(x)p(y)

I(X; Y ) = H(X)¡ H(XjY )



Information Channels 

• Let X and Y be the input alphabet and output alphabet, 
respectively, and let S be the set of channel states.  An 
information channel is a system of probability functions: 
 
where                        ,                        , and           for  

• Mutual information between the input and output provides 
a measure of channel transmittance: 
 

• The maximum over all distributions is known as the channel 
capacity. 
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Modeling Information Flow 

pn(¯1; : : : ; ¯nj®1; : : : ; ®n : s)

®1; : : : ; ®n 2 X ¯1; : : : ; ¯n 2 Y s 2 S n = 1; 2; : : : :

T (X ;Y) = H(X ) ¡H(XjY)



Systems and Information 

• The properties of information, e.g., its branching 
property, provide a fundamental basis for 
decomposing systems. 

• The generalization of information theory to N-
dimensions provides a statistical analysis tool for 
understanding systems in terms of the 
information geometry of its variables; 
– Permits measurement and analysis of rates of 

constraints (i.e., historical conditioning), 
– System decomposition follows from decomposition of 

constraints on information and associated rates. 
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Information Geometry 



Information Rates 

• Information captures relationships between 
present values of variables. 

• Constraints due to past values are captured via 
entropy rates; 
– The entropy of X conditioned on all prior values, 
– Computationally challenging in this form. 

• Alternative formulation follows from recognition 
that the total uncertainty of hX1,X2,…, Xni is 
approximately the entropy rate times the length 
of the sequence: 
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Capturing History 

¹H(X) = lim
n!1

1

n
H(X1; X2; : : : ; Xn)



Information Structure 

• Can determine the communications topology 
provided by available observation processes; 
– fusing information from multiple sensors, 
– Reconstituting lost or degraded sensing, 
– Detect system changes reflected in changing 

communication topology. 
• Identify “correlative” structure of sensor data; 

– Provides means of identifying relevant (possibly 
abstract) subsystems, 

– Basis for mesoscopic models and “summary” 
variables. 
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Systems as Communication Networks 



System Structure 

• System § is defined as a set of ordered variables 
                                 where the set of internal variables is 
denoted §int and directly observable variables by §out 
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Information-theoretic View of Systems 

§ = fXij1 · i · ng



System Decomposition 

• Systems are characterized by their associated 
variables hence information theoretic 
measures can be applied, e.g., 
 

• Information chain rules provide a calculus for 
partitioning systems, 
 

• More sophisticated “Laws of Information” can 
be constructed. 
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Systems and Chain Rules 

H(§) = ¡
X

s2S

p(s) log2 p(s);

¹I(§i; §j) = ¹H(§i) + ¹H(§j)¡ ¹H(§i; §j)



Expected Results 

• Effective (accurate, computationally tractable with 
sufficient precision) means of computing entropy 
measures for the processes/components/systems of 
interest. 

• Distributed and self-organizing method for using 
entropy measures to identify intrinsic structure of 
power generation systems. 

• Self-organizing method for combining observations 
with dynamics/behaviors/events of interest. 

• Statistical techniques for 
detecting/classifying/identifying conditions of interest 
and characterizing the severity and prognosis of system 
performance degradation. 
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Fundamental building blocks for self-organizing sensor network for condition monitoring 



Functional Breakdown Structure 
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Project organization per thesis breakout 



Self-Organizing Logic 

      
          



Element Objectives 

• Develop algorithms and software systems that 
enable a sensor network for condition monitoring 
of power generation plants to be adaptive, 
resilient, and self-healing. 
– Develop techniques, algorithms, and software for 

dynamically discovering the intrinsic communication 
topology of power generation systems. 

– Develop techniques, algorithms, and software for 
associating sensor data streams with operational 
objectives. 

– Develop techniques, algorithms, and software for 
reconstituting lost or degraded sensing and 
communication capabilities. 
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Challenges and Opportunities 

• Scaling problems associated with centralized methods: 
– Complexity, 
– Transmission of large amounts of data to central processes 

(bandwidth, QoS), 
– Computational footprint (cycles, memory). 

• Accommodate existing infrastructure 
• Lack of detailed a priori understanding of components, processes, 

and their interactions 
• Wide variation in operating conditions, system permeability 
• Ubiquitous computational and (wireless) communication resources 
• Power management technologies engendering a new class of 

instrumentation” 
– No umbilical 
– Physically reconfigurable on-the-fly 
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Technical Approach 

• The aforementioned constraints and opportunities mandate a distributed, and 
agent-based approach and strongly suggest the use of biologically inspired 
algorithms. 

• Distributed 
– Monolithic approaches do not scale well and tend to be “brittle,” i.e. do not accommodate 

new instrumentation or permit reorganizing existing infrastructure without significant rework. 

• Agent Based 
– Agent based approaches are flexible and embed inherent system descriptions.  They provide a 

powerful basis for bottom-up application to complex systems and minimize communication 
requirements while distributing processing tasks in a realistic manner. 

• Biologically Inspired 
– Biologically inspired approaches provide the machinery necessary to capture emergent 

phenomena and thus provide a basis for accommodating unanticipated contingencies. This is 
crucial for large-scale complex systems where all contingencies cannot be enumerated.  
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Sensor Network  
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Connecting data to operational needs and objectives 

• Discovering the actual topology of 
the system’s intrinsic communication 
structure. 

• Associating information streams with 
monitoring processes. 

• Extracting the information from the 
relevant data streams for fault 
detection, diagnosis and prognosis. 



Topology Discovery 

• The first step in implementing the sensor network is to determine 
the system’s intrinsic topology. The intrinsic communication 
between elements of the system manifests in the mutual 
information between the sensing performed at disparate locations 
of the network and thus can be used to extract the system’s intrinsic 
topology.  

• Biologically inspired approaches are strong candidates for 
developing the distributed agent based system for the sensor 
network.  
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Overview of Swarm Intelligence 

• In particular, Swarm Intelligence is investigated for these purposes: 
– Swarm intelligence is inspired by the collective behavior of animals in nature.  

Some natural examples include insect colonies, bird flocks, and fish schools. 
– A swarm intelligence system consists of a group of agents interacting locally 

with each other and with their environment. The agents follow simple rules 
governing their local behaviors that, in turn emerge global behaviors in a 
bottom-up fashion. 

 



Principles of Swarm Intelligence 

1. Self-organization 
– Positive Feedback (Amplification) 
– Negative Feedback (Balancing) 
– Amplification of Fluctuations (Random Walks, Error) 
– Multiple Interactions 

2. Stigmergy  
      Indirect communications between system elements via 

interaction with environment, i.e. individual behavior 
modifies the environment which in turn modifies the 
behavior of other individuals 

3. Bounded Autonomy 
 Local behaviors are not specified in a deterministic 

manner, rather bounds on allowable behaviors are given, 
typically probabilistically.   
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Candidate Approaches 

• Some of the algorithms inspired by the 
emergent behavior of social insect 
colonies and other animal societies: 
– Foraging Behaviors 

• Ant System (AS) 
• Ant Colony Optimization (ACO) 
• Basic models of foraging activities 

– Ant Clustering Behaviors 
• Cemetery organization 
• Larval sorting  
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Foraging Behavior 

32 

Foraging Patterns of Three Army Ant Species with Different Diets 

These behaviors are used as a basis for optimization approaches due to its 
tendency to find the shortest path, most notably Ant System and Ant 
Colony Optimization.  Further, the behaviors can be adapted to the 
specifics of the problem at hand. 

• Eciton hamatum 
• Diet: dispersed social 

insect colonies 
• Food distribution:  rare 

but large 

• Eciton rapax 
• Diet:  intermediate diet 
• Food distribution:  

intermediate food source 

• Eciton burchelli 
• Diet: scattered arthropods 
• Food distribution: can 

easily be found but each 
time in small quantities  



More general model of ant foraging 
including sojourn probabilities, 
pheromone thresholds, provides richer 
source of behaviors: 

Army Ant Foraging Behavior Modeling 
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Foraging for foraging’s sake 

Different parameters (i.e., food 
concentration, distribution, 
pheromone thresholds) produce 
different raid patterns. 
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Optimization in Foraging Behavior 
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An introduction to Ant Colony Optimization (ACO) 

• Introduced by Marco Dorigo (1992) 
• Ants lay a pheromone trail as they move. Pheromone levels 

increase with traffic but decrease with dissipation over time.  
The pheromone marking is thus reinforced on frequently used 
trails are and fades on infrequently used trails. 

• Two ants start with equal probabilities 
of taking either path. shorter path => 
shorter transit time => more 
pheromone => the next ant takes the 
shorter path 

• The combination of reinforcing 
pheromone trail leads to the shortest 
path to the food source. With random 
search procedures, the ants tend to 
also explore the alterative food sources.  



ACO/AS Simulation 

• Applied AS and ACO to problem of finding 
shortest paths on a network  
– System elements and sensors => nodes  
– Find shortest information distance => greatest 

mutual information 
• Three networks considered: 

– Different number of nodes, 
– Different configurations.  

• Implemented in Matlab© 

• Examined performance and tuning options 
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Network detection as optimization problem 



Networks 
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The three considered networks 

Network 1 
29 Nodes 

Network 2 
38 Nodes 

Network 3 
194 Nodes 



Ant System 

1. Place ants randomly on nodes. 
Number of Ants = Number of Nodes 

2. Choose the next node j with probability: 

 𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘 = 𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡) 𝛼𝛼. 𝜂𝜂𝑖𝑖𝑖𝑖
𝛽𝛽

∑ 𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡) 𝛼𝛼. 𝜂𝜂𝑖𝑖𝑖𝑖 𝛽𝛽𝑙𝑙∈𝐽𝐽𝑖𝑖
𝑘𝑘

 

3. Update the pheromone trail: 
 

𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡) ← 1 − 𝜌𝜌 . 𝜏𝜏𝑖𝑖𝑖𝑖 𝑡𝑡 + ∆𝜏𝜏𝑖𝑖𝑖𝑖 t
+ 𝑒𝑒.∆𝜏𝜏𝑖𝑖𝑖𝑖𝑒𝑒 (𝑡𝑡) 
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Actionable Information 



Results 

Network Iterations Accuracy 

Network1 25 % 89.12 

Network 2 25 % 98.35 

Network 3 25 % 77.34 
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Comparing the algorithm accuracy for each network 

Network 1 
29 Nodes 

Network 2 
38 Nodes 

Network 3 
194 Nodes 



Observations 

• The AS algorithm performance does not 
scale well with increasing node count. 

• Displays poor sensitivity to adjustable 
parameters (i.e. not easily tuned). 
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Ant Colony System 

• Ant Colony System is similar to Ant 
System, which is based on the foraging 
behavior of ants. 

• There are four main differences 
between these two algorithms: 
I. Exploration 
II. Transition Rule 
III. Global Trail Update 
IV. Local Trail Update 
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Results 

Network Number of Agents Number of Iterations Accuracy 

Network1 
 

50 25 % 98.5 

100 50 % 95.8 

Network 2 
 

50 25 % 100 

100 20 % 100 

Network 3 
200 50 % 82.8 

300 25 % 81.9 
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Comparing the algorithm accuracy for each network 

Network 1 
29 Nodes 

Network 2 
38 Nodes 

Network 3 
194 Nodes 

 

  

 

  



AS and ACS Comparison 
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AS and ACS Comparison 

• Network 3 
• 25 Iterations 

Networks 2 and 3 with Different number of Agents 

• Network 2 
• 25 Iterations 
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Recapitulation 

• The ACS algorithm works better than the AS 
algorithm. 

• Changing the characteristics of the algorithm 
such as parameter values will not affect the 
results. 

• The selection of the starting points at each 
iteration and pheromone trail update play an 
important role in this algorithm. Choosing the 
appropriate strategy will improve the results. 

• These methods are designed for optimization 
and are limited in the behaviors that they can 
demonstrate and hence the flexibility that they 
offer. 
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ACO and AS Comparison 



Steam Plant Simulation 

The Reference Unit: 
−  Alstom’s ultra-supercritical pulverized coal-fired plant design 
− Gross electrical output of 1080MWe.  
− The steam generator will produce steam flow to a turbine 

generator with boiler outlet conditions of main steam flow of 
600°C @ 278 bar g and RH outlet steam flow of 605°C @ 58 bar 
g.  

− The plant net heat rate is 9045 kJ/kWh.  
Model Subsystems: 
− steam generator (boiler) 
− steam turbines  
− feedwater preheating system  
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Model Structure 

Inputs 

O2Bias O2 Setpoint Bias 

DPBias Furnace Differential Pressure Setpoint Bias 

FDT Final desuperheater Temperature  

SOFA Separated overfire air damper bias 

Tilt Main Wind Box Tilt 

ULD Unit Load Demand 

WWO Waterwall Outlet  

Outputs 

SHODT Superheater Outlet Temperature Deviation 

RHODT Reheater Outlet Temperature Deviation 

FEGT Final Exhaust Gas Temperature 

NOX Stack NOx 

CO Stack CO (constraint) 

ExO2 Excess O2 (constraint) 

Steam Plant Model 

O2Bias 
DPBias 
FDT 
SOFA 
Tilt 
ULD 
WWO 

SHODT 
RHODT 
FEGT 
NOX 
CO 
ExO2 
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Raw Data 

• Step testing data: 
– To identify the input/output model between 

each pair for dynamic model identification, a 
step test sequence is performed to stimulate 
the process. 

– The dynamic simulation is run to steady state 
at one operating point. 

– For each settled MV, the values of all CVs are 
recorded. 

• Coal flow, MW generation, air flow and 
other specifications are also recorded 
during the step testing. 

47 

Step Testing Data 



Step Test  for O2Bias 
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Preparing Data for Modeling 

• Normalize data between [0.1]. 
– Normalization does not impact correlation 

coefficient calculations. 
• Construct IDDATA object for used with 

Matlab’s System Identification Toolbox. 
• Construct model: 

– Merge all data sets into a single data set and 
compute a MIMO model. 

• Results were not promising. The single model could not 
capture the nonlinearity between all of the input/output 
pairs. 

– A SISO model is computed for each input/output 
pair. At the end we will have 6x7 SISO models for 
our steam plant simulation. 
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System Identification 



SISO Modeling Results 

• Hammerstein-Wiener Model 
– Block Diagram :  

 
 
 

 
• w(t) = f(u(t)): nonlinear function transforming input 

data u(t).  
• x(t) = (B/F)w(t): linear transfer function. 
• y(t) = h(x(t)): nonlinear function that maps the 

output of the linear block to the system output.  
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System Identification 



DPBias Modeling Results 
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Models with their fit percentage 

M1 

M2 

M3 

M4 

M5 

M6 

DPBias 

RHODT  (%95.4) 

SHODT  (%84.38) 

FEGT  (%82.5) 

NOX   (%98.77) 

CO   (%95.42) 

ExO2  (%83.51) 



DPBias-RHODT Model 
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System Identification 
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Constructing New Data 

• Using calculated SISO models, construct new data 
with custom input signals.  

• Enables introduction of faults into the system for 
testing performance of fault detection framework. 
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Network Discovery 
The observation of physical system from a foraging perspective 

Agent going from node 6 to node 2: 
 
Behavior: 

The agent carries the data, w6 ,from 
its home node to the next node. 

 Food Definition: 
The Correlation Coefficient between 
the time series w6 and w2. 

xi : a time series which is the observations at node  I  
wi : a time series which is the partial observations of xi at node  i 

2 

6 

1 
2x

6x4x

3 

4 5 

1x 3x

5x

6w

2w

7 u
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Proposed Algorithm Based on Foraging 
Behavior of Ants 

• A set of agents are randomly placed on the 
nodes such that each node has at least one 
agents. 

• Agents select the next node based on the 
current correlation coefficient for that time 
frame. They favor the nodes with higher 
correlation coefficient. 

• As the agents travel, pheromone is deposited 
on the edges as a function of correlation 
coefficient between the source and destination 
node. 

• Based on the pheromone values at the end of 
the last iteration, a topology is extracted. 
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Proposed Algorithm Based on Foraging 
Behavior of Ants 

• For agent 𝒌𝒌 at node 𝒊𝒊,  the next 
node 𝒋𝒋  is chosen based on the 
following rule: 
 
 
 
 

 
– 𝑞𝑞 : a random variable uniformly 

distributed over   
– 𝑞𝑞0: a tunable parameter over   
–     : set of all the nodes in the system 

except for the current node   
–           : node that is randomly selected 

according to this probability:  
 

𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘 (𝑡𝑡) =
𝑔𝑔(𝑤𝑤𝑖𝑖 ,𝑤𝑤𝐽𝐽)(𝑡𝑡)  

∑  𝑔𝑔(𝑤𝑤𝑖𝑖 ,𝑤𝑤𝐽𝐽)(𝑡𝑡)𝑙𝑙∈𝐽𝐽𝑖𝑖
𝑘𝑘

 

• The agent 𝒊𝒊 goes to node 𝒋𝒋 and 
updates the pheromone trail of 
the pair (𝒊𝒊, 𝒋𝒋) according to the 
following rule: 
 
 
where: 

 
 
 

– Note that the exact value of 
correlation coefficient is 
deposited on the edge which is 
different from the previous 
version.  

0

0
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 q q
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i u i u
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w w correlation coefficient w w

w w if
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J if
∈
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k
iJ

k
iJ J∈

( ) (1 ) ( ) ( , )ij ij i jt t f w wτ ρ τ← − ⋅ +

( , ) _ ( , )i j i jf w w correlation coefficient w w=
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Initialization 

• Number of Nodes= 7 
• Number of Agents= 7x100 

– 7 distinct swarms, each containing 100 
agents, deployed to the network at different 
times during the simulation. Each swarm 
deposits a distinct pheromone and only 
follow their own pheromone on the edges. 

• Time Period=50s 
• Initial Value on pheromone Trail=0  
• pheromone decay coefficient=0.1 
• Initial position of the agents= random, 

but at least one agent at each node 
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Simulation Snapshot 
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Information/Objective Mapping 

• Having the knowledge on 
intrinsic topology, we can 
properly align our observation 
processes, including virtual 
sensors, with the intrinsic 
communication topology. 

• Virtual sensors can be used to: 
1. Sense things that we cannot 

directly instrument. 
2. Validate or verify other 

measurements. 
3. Reconstitute lost sensing and 

communication. 
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Graph Similarity Measures 

• Graph similarity techniques can be used to 
detect the changes in the extracted 
topology.  

• These changes can be the result of a fault 
in the system or the changes in system’s 
dynamics. 

• In a class of similarity methods in which 
an element (e.g., a node or edge) in graph 
GA and an element in graph GB are 
considered similar if their respective 
neighborhoods within GA and GB are 
similar. 
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Pattern Mining 

• In pattern mining, dynamic graphs have 
been analyzed from two main research 
tracks:  
– The study of the properties that describe 

the topology of the graph, 
– The extraction of specific sub-graphs to 

describe the graph evolution. 
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Fault Detection and Diagnosis 

 
 
 

• Map the information streams to 
operational objectives and 
needs  for fault detection. 
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Processing the information/objective mapping for Fault Detection  

 



Conclusions 

• In this presentation, we discussed foraging 
behavior and raid patterns of army ants. 

• Examined and run simulation for two 
optimization algorithms based on social 
behavior of ants. 

• Proposed a new algorithm for condition 
monitoring of a steam plant based on foraging 
behavior of ants and applied it to real data. 

• For the path forward, we will explore graph 
similarity and pattern mining techniques to 
select the appropriate approach for our project. 
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Thank you… 



BACKUP SLIDES 
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DIFFERENCES BETWEEN ACS AND 
AS ALGORITHMS 
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1- Exploration 

• A Candidate List is formed for each city which 
is the list of preferred cities to be visited from 
that given city and consists of cl closest cities.  
– From any given city, first the candidate list for that 

city is examined for possible next city. 
– If all the candidate list cities are visited, the next 

city will be the closest of the yet unvisited cities. 



2- Transition Rule 

• An ant k on city i chooses the next city j to move based 
on the following rule: 
 

𝑗𝑗 = �
arg𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢∈𝐽𝐽𝑖𝑖𝑘𝑘 𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡) . 𝜂𝜂𝑖𝑖𝑖𝑖 𝛽𝛽 𝑖𝑖𝑖𝑖 𝑞𝑞 ≤ 𝑞𝑞0

𝐽𝐽 𝑖𝑖𝑖𝑖 𝑞𝑞 > 𝑞𝑞0
 

 
– q: a random variable uniformly distributed over [0,1] 
– q0: tunable parameter over [0,1] 
– 𝐽𝐽 ∈ 𝐽𝐽𝑖𝑖𝑘𝑘 : city that is randomly selected according to this 

probability: 

𝑝𝑝𝑖𝑖𝐽𝐽𝑘𝑘 (𝑡𝑡) =
𝜏𝜏𝑖𝑖𝐽𝐽(𝑡𝑡) . 𝜂𝜂𝑖𝑖𝐽𝐽

𝛽𝛽

∑ 𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡) . 𝜂𝜂𝑖𝑖𝑖𝑖 𝛽𝛽𝑙𝑙∈𝐽𝐽𝑖𝑖
𝑘𝑘

 



3- Global Trail Update 

• The global trail updating is only applied to the edges 
belonging to the best tour since the beginning of the 
trial: 
 

𝜏𝜏𝑖𝑖𝑖𝑖 𝑡𝑡 ← 1 − 𝜌𝜌 . 𝜏𝜏𝑖𝑖𝑖𝑖 𝑡𝑡 + 𝜌𝜌.∆𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡) 
 

– (𝑖𝑖, 𝑗𝑗): the edges belonging to the best tour 𝑇𝑇+ 
– 𝜌𝜌: a parameter governing the pheromone decay 
– ∆𝜏𝜏𝑖𝑖𝑖𝑖 𝑡𝑡 = 1

𝐿𝐿+⁄  



4- Local Trail Update 

• The local pheromone update is performed after each 
transition by the following formula: 
 

𝜏𝜏𝑖𝑖𝑖𝑖 𝑡𝑡 ← 1 − 𝜌𝜌 . 𝜏𝜏𝑖𝑖𝑖𝑖 𝑡𝑡 + 𝜌𝜌. 𝜏𝜏0  
 

– 𝜏𝜏0 = (𝑛𝑛. 𝐿𝐿𝑛𝑛𝑛𝑛)−1: the initial value of pheromone trail 
– 𝑛𝑛: number of cities 
– 𝐿𝐿𝑛𝑛𝑛𝑛: length of a tour produced by the nearest neighbor 

heuristic 



DETAILED RESULTS FOR ACS 
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Network 1 Simulation Results 

Number of Agents Number of Iterations Accuracy 

50 25 % 98.5 

50 50 % 95.8 

60 25 % 96.9 

60 50 % 96.7 

100 50 % 95.8 

100 500 % 95.8 

500 5 % 84.3 
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Comparing the algorithm accuracy for network 1 
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Network 2 Simulation Results 

Number of Agents Number of Iterations Accuracy 

50 25 % 100 

60 20 % 100 

100 20 % 100 
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Comparing the algorithm accuracy for network 2 

Network 2 with 38 Nodes 
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Network 3 Simulation Results 

Number of Agents Number of Iterations Accuracy 

200 25 % 82.8 

300 25 % 81.9 

200 50 % 82.2 
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Comparing the algorithm accuracy for network 3 

Network 3 with 194 Nodes 
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CORRELATION COEFFICIENT AND 
NORMALIZATION 
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Correlation Coefficient 
Normalization Impact 
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