2

COMBUSTION
RESEARCH

ACILITY
F: __}!L

Ethan Hecht and Christopher Shaddix
Sandia National Laboratories
Livermore, CA 94550

NETL Program Manager: Steven Seachman

NETL Crosscutting Research Review Meeting
Pittsburgh, PA USA
April 27, 2015

() Sandia National Laboratoies



Validated CFD models can be a powerful
design tool

Improvements in energy efficiency, availability, fuel flexibility, and

capital effectiveness of oxy-fuel coal boilers and coal gasifiers

increasingly rely on CFD modeling

e Accuracy of CFD modeling limited by
— poor knowledge of fundamental
coal conversion rate parameters
e ignition delay
e volatile loss
e char combustion/gasification rate
— limitations of simplified models used

to predict coal conversion and
heat-flux in CFD simulations

Air combustion Oxyfuel combustion

Simulation to determine suitability
of boiler for oxyfuel combustion
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FRE Data is collected and analyzed from unique

experimental facilities

e (Create relevant reaction conditions

e Perform both optical and sampling-based diagnostic measurements
to understand fundamental physics (e.g. critical rate parameters)

e Use well-controlled particles (e.g. size, feed rate, devolatilization
conditions)

1-atm entrained flow reactor pressurized entrained flow reactor
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2\ Fundamental physics are explored using a
one-dimensional, continuous-film model

Use detailed reacting porous particle model to interpret experimental
trends and guide the application of simplified reacting particle models
— SKIPPY (Surface Kinetics in Porous Particles) model, initially developed

by Prof. Brian Haynes (Univ. Sydney)
— Detailed surface kinetics and gas-phase kinetics provided through calls
to CHEMKIN Il

— Heterogeneous mechanism, char properties and
combustion environment specified by user

— Allows evaluation of boundary layer reactions and
different kinetic mechanisms or rate parameters

A E

Reaction (glcm?2s)  (kJ/mol)

Heterogeneous oxidation:

(R1) C_s+0,=>CO+0_s 3.3E+15 1674
(R2) O_s+2C(b)=>CO +C_s 1.0E+08 0. “
(R3) C_s + 0,=> 0, s+ C(b) 9.5E+13  142.3

(R4) O, s+2C(b)=>C_s + CO, 1.0E+08 0.

CO, gasification reaction:

(R5) C s +CO,=>CO + O_s + C(b) variable 251.0
Steam gasification reaction:

(R6) C_s +H,0=>H, +O_s + C(b) variable 222.8
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| ) A single-film model, with reactant penetration
neglects boundary layer reactions

e species conservation e thermal energy
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e accounts for Stefan flow

e reactant penetration (for each reactant: O,, CO,, H,0)
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The single-film model is sufficiently accurate
as formulated, with gasification reactions

CO; diluent N, diluent
| we==single-film
: === N0 homogeneous chemistry
[ 0, e==e continuous-film
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What effect does the extent of reactant
penetration have on apparent kinetic rates?

Motivation:

— CFD models almost always contain an apparent Arrhenius kinetics
model of char combustion, neglecting the effect of different extents of
reactant penetration

— during oxy-fuel combustion with FGR, char combustion occurs in a CO,
background gas, rather than N,

— the 20% lower diffusivity of O, in CO, has been shown to reduce
apparent char burning rates, attributed to slower diffusion through
the external boundary layer

— unclear how much lower gas diffusivity through the char pores also
reduces the burning rate
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A\ Different diluents are used to change the

reactant penetratlon

Approach: o
. . B | Quartz Chimney Coded Aperture
— use laminar entrained flow reactor to L S, O
Camera 4 "/.
produce same T combustion S g | . S S
environments with N,, CO,, and He diluents e
. e . & oy
e He has very high diffusivity ! \%
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— measure 70 um PRB subbituminous char particle combustion
temperatures and burnout rates in different environments

— compare measurements against intrinsic and apparent kinetics models
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| CA“'RF Particles ignite faster with a He diluent, but
" react at lower temperature than a N, diluent
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A Although the temperatures are much lower,
the burning rate in He is similar to N,

Char Burnout Measurements:

1.0
1 N, o CO, ] He
5 0.8 = I 7 - o
g - 9 o ] '
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Characteristic Mass Burning Rates (1/s)

Char mass burning rate Oxygen Concentration
Gas

is similar in N, and He 12 vol-% 18 vol-% 24 vol-%
environments, and is

enhanced in CO, N 14.1 20.2 34.0
(gasification reaction) CO; 18.9 26.9 38.5
He 15.0 22.8 21.4
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@ Apparent and intrinsic kinetic analyses will
7 elucidate the effect of reactant penetration

Work in Progress:

— Apparent kinetics and intrinsic kinetics analysis will be performed in
N, and He environments to evaluate char kinetic rates that are
consistent with measured char particle temperatures

— These results will then be compared against the measured char
burnout rates to evaluated suitability of the models and errors in
apparent kinetic model when applied to chars burning in diluents with
different diffusivity
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@i’F Pressurized oxy-combustion can reduce the
7 efficiency penalty for carbon capture

Motivation:
— Improved heat integration of components for pressurized oxy-
combustion can improve efficiencies over atmospheric pressure oxy-
combustion

— dearth of quality data and rate information at high temperatures at
which this process would occur

— extrapolating rates from PTGA measurements (at 1000-1100 K) can be
off significantly if activation energy is erroneous
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A unique reactor is used to make kinetic
measurements for pressurized oxy-combustion

Approach:

— perform experiments in the turbulent
entrained flow reactor — low particle
loading, isothermal conditions

— separate char formation step from char
combustion/gasification, to clearly
quantify rates —i.e. pre-form chars

— perform optical measurements of char
particle temperatures, as well as extractive
measurements of carbon conversion, to
quantify rates 5 O

SEM of generated coal char
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%F An optical probe allows for in-situ, individual
- particle temperature measurements

— use calibrated fiber-optic coupled probe for in-situ particle
temperature measurements

— cold target limits background radiation from hot walls

cold target
probe _
fiber bundle face
visible ND filter wheel
visible PMT module
) IR ND filter wheel visible current-voltage
optical IR PMT module ?;“phﬁert )
H current-vo age
collection amplifier
probe
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Statistically significant data is collected to

capture variability in individual particle reactivity
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CRF. Powder River Basin mean coal char reaction

temperatures
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Pittsburgh seam mean coal char reaction

temperatures
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A The sub-bituminous coal char is more
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CZ\FQF Gasification measurements in pure CO, can
confirm oxy-combustion measured rates

'~ — performed char gasification experiments
with various CO, concentrations at 1400 ° C
and pressures up to 8 atm (improved
heating and thermal management will allow
experiments up to 20 atm)

— performed char
gasification
experiments in
atmospheric

1.0 = & pressure, high-T
i (2200 K) CO,
!f, - Black Thunder PRB Coal — New diagnostic
é - 90-105 um char particles (Raylelgh
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Summary of Recent Progress

Char combustion temperature higher with N, diluent than with CO,
or He

e Char conversion rate with N, diluent similar to He diluent, but
increases with CO, diluent

e Single-film model has been applied to extract intrinsic kinetics for
oxidation and CO, gasification for two coal chars

— Optical pyrometry probe used to make in-situ temperature
measurements

— Reaction rate of PRB coal char is 20-30 times higher than Pittsburgh

— Gasification reactions affect burning rate at high temperature
(oxygen-enhanced combustion)

e CO, gasification kinetics of pc char has been quantified from 1 -8
atm
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CRE, Continuing and Future Work

Rayleigh-based gas temperature measurements in atmospheric pressure reactor

— gas temperature profile in 2200 K CO, environments — to complete quantification of char
gasification kinetics at 1 atm in 100% CO,

Fit apparent and intrinsic kinetic models to N,, He, CO, diluent data
— evaluate the effect of reactant penetration
Additional char gasification kinetic measurements in high-pressure entrained flow
reactor, utilizing optical pyrometry probe
— redesign extraction probe
— steam gasification
— inhibition reactions (CO, H,)
Oxy-fuel char combustion kinetics at elevated pressure
— conversion measurements on collected chars
— other rank coal chars
— wider range of conditions
— compare gasification rates to those in pure gasification (CO,, H,0) environments

Incorporation of kinetic model and measured kinetic rates into carbonaceous
chemistry for computational modeling (C3M) code
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