Opportunity:
Researchers at the U.S. Department of Energy’s National Energy Technology Laboratory (NETL) have developed a method of basic immobilized amine sorbents (BIAS) pelletization which incorporates low cost additives (fly ash for added strength and a poly[chloroprene] [PC] binder) producing sorbent pellets displaying high carbon dioxide (CO\textsubscript{2}) capture capacity, excellent cyclic stability under practical conditions, and superior attrition resistance in a dynamic environment. As such, these pellets represent a cost-effective, highly efficient technology for commercial-scale CO\textsubscript{2} capture. The technology is available for licensing and/or further collaborative research with NETL.

Overview:
Carbon sequestration is considered essential to significantly reducing CO\textsubscript{2} emissions. Basic immobilized amine sorbents (BIAS) have been demonstrated at bench and pilot-scales to be a highly promising means of post-combustion CO\textsubscript{2} removal. Wide-spread application of BIAS, however, will require pelletization to make these materials compatible with commercial reactors. Conventional methods of making BIAS pellets tend to result in pellets that lack mechanical strength, have reduced CO\textsubscript{2} binding capacity relative to the particle form of sorbent, and/or lose their ability to bind CO\textsubscript{2} after multiple adsorption-desorption cycles. Thus, there is a need for BIAS pelletization methods that are scalable, low-cost, and maintain sorbent CO\textsubscript{2} capture capacity and efficiency.

A BIAS pelletization method, involving extrusion of a wet paste into pellet shapes, well suited for semi-continuous scale-up has been developed. Pelletization is achieved via the novel combination of inexpensive, readily-available fly ash (FA) as a strength additive and low-cost, hydrophobic poly(chloroprene) (PC) as a binder. The combination of FA strength additive and PC imparts both high strength and flexibility to the pellet, ideal for performance in a dynamic environment. The resulting BIAS/FA/PC pellets possess high mechanical strength, attrition resistance, CO\textsubscript{2} capture capacity, and long-term CO\textsubscript{2} capture stability. The pelletization process is simple, low-cost, and scalable producing pelletized sorbents that can be used for packed beds, moving beds, and other reactor configurations. The pellets can also be used under both pressure and temperature swing conditions.

Principal Investigator: Chris Wilfong

Contact
NETL Technology Transfer
techtransfer@netl.doe.gov
Generates BIAS pellets possessing high mechanical strength and CO₂ capture capacity and efficiency

Produces hydrophobic sorbent pellets for effective and cyclic CO₂ capture stability, even under practical humid conditions

Yields sorbents with reduced energy demands, minimizing the overall cost of CO₂ capture.

Applications:

CO₂ capture for coal and natural gas combustion plants, Marcellus shale gas cleanup, cement production plants, confined spaces such as submarines and space shuttled/stations, landfills and aerobic digesters for biogas cleanup, and waste incineration units

Related Patents and Patent Applications:

- Provisional Patent Application (S-140295), titled “A Pelletized Basic Immobilized Amine Sorbent (BIAS) Utilizing Fly Ash and Polymer Binders” has been filed. Inventors: Walter Wilfong, McMahan Gray, and Yee Soong

