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Motivation: Energy Systems

• Where are we?
- Advanced energy systems becoming more interconnected
- Advanced Power Plants
- Computation pushed further down the pipe
- More powerful, cheaper, smaller devices
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Motivation: Energy Systems

• Where are we?
- Advanced energy systems becoming more interconnected

- Advanced Power Plants
- Computation pushed further down the pipe
- More powerful, cheaper, smaller devices

• Where are we going?
- Hybrid systems (eg. Hyper)
- Competing objectives
- Smart sensors, actuators
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Motivation: Energy Systems

• Where are we?
- Difficult to model
- Distributed decision making
- Scaling
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Motivation: Energy Systems

• Where are we?
- Difficult to model
- Distributed decision making
- Scaling

• Where are we going?
- Even more difficult to model
- Even more distributed decision making
- Even more scaling
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Motivation: Energy Systems

• We need to account for?

- Model inaccuracies (or lack of models)
- Thousands of actors (sensors, controllers, users)
- Failing components
- Competing objectives
- Dynamic and stochastic environments

- And still control systems to result in safe, efficient operation
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Outline

• Motivation: multiagent, multi-objective control in complex systems

• Roadmap & objectives

• Key Milestones for last year

• M 5: Develop robust controller 

• M 6: Develop reconfigurable controller

• Summary & Project Status
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Roadmap and Objectives

• Learning-Based Control: multiagent, multi-objective control in complex 
systems

• Multiagent
- Biomimetic distributed subsystem-level control
- System-level results

• Multi-objective Optimization
- Simultaneously optimize multiple competing objective functions

• Reconfigurable
- Adapt to changing power system needs
- Develop new policies with previously unconsidered objective functions

Objective 1

Objective  2

Objective 3
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Roadmap and Goals

• Learning-Based Control: multiagent, multi-objective control in complex 
systems

• Multiagent
- Biomimetic distributed subsystem-level control
- System-level results

• Multi-objective Optimization
- Simultaneously optimize multiple competing objective functions

• Reconfigurable
- Adapt to changing power system needs
- Develop new policies with previously unconsidered objective functions

Goal 1

Goal  2

Goal  3
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Project Milestones

Milestone 
Number

Milestone Title Planned 
Completion Date

Actual Completion 
Date

1 Develop an abstract simulator for 
advanced power systems

June 2014 June 2014 ✔
2 Develop bio-mimetic control algorithm 

for advanced power systems
Sept. 2014 Sept. 2014 ✔

3 Develop system metrics to measure 
tradeoffs of plant objectives

March 2015 March 2015 ✔
4 Develop multi-objective control 

algorithm for advanced power systems
Sept. 2015 Sept. 2015 ✔

5 Develop robust controller for advanced 
power system

June 2016 June 2017
Ongoing

6 Develop reconfigurable, multi-objective 
controller for advanced power system

Sept. 2016 September 2017
Ongoing
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Project Milestones

Milestone 
Number

Milestone Title Planned 
Completion Date

Actual Completion 
Date

1 Develop an abstract simulator for 
advanced power systems

June 2014 June 2014 ✔
2 Develop bio-mimetic control algorithm 

for advanced power systems
Sept. 2014 Sept. 2014 ✔

3 Develop system metrics to measure 
tradeoffs of plant objectives

March 2015 March 2015 ✔
4 Develop multi-objective control 

algorithm for advanced power systems
Sept. 2015 Sept. 2015 ✔

5 Develop robust controller for advanced 
power system

June 2016 June 2017
Ongoing

6 Develop reconfigurable, multi-objective 
controller for advanced power system

Sept. 2016 September 2017
Ongoing
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Project Overview

State Modeling
Neural Network

HyPer Facility
Run Data
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Project Overview

State Modeling
Neural Network

HyPer Facility
Run Data

Time Domain Simulator (milestone 1)

Current 
State

Control 
Action

Successor State
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Bio-Mimetic 
Controller
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Fitness

Successor State
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Project Overview

State Modeling
Neural Network

HyPer Facility
Run Data

Multi-Objective
Fitness Assignment

(milestones 3)

Successor State

Time Domain Simulator (milestone 1)

Current 
State

Control 
Action Candidate

Controller
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Bio-Mimetic 
Controller
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Evaluation of 
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and Reconfigurability
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Multi-Objective 
Fitness
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Project Overview

State Modeling
Neural Network

HyPer Facility
Run Data

Multi-Objective
Fitness Assignment

(milestones 3)

Successor State
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Outline

• Motivation: multiagent, multi-objective control in complex systems

• Roadmap & objectives

•Key Milestones for last year

• M 5: Develop robust controller

• M 6: Develop reconfigurable controller

• Summary & Project Status
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Milestone 5: Robust Controller

• Train the controller for robustness to noise

- Neural networks are known to be more robust to noisy inputs
- Translate this robustness onto the controller

Deliverable: Train controller that are robust to actuator and sensor noise

18



Kagan Tumer, Oregon State University

Input and desired State trajectory

Start stateStart State

Desired State
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Add controller

Start state

Controller

Control Action

Start State

Desired State
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Add Simulator

Start state

Controller Neural Network              
Simulator

Control Action

Start State

Desired State

New State
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Compute fitness

Start state

Controller Neural Network              
Simulator

Control Action

Fitness 
Start State

Desired State Fitness

New State
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Close the Loop

Start state

Controller Neural Network              
Simulator

Control Action

Fitness 
Start State

Desired State Fitness

New State
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Desired Turbine profile
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Controller trained with Perfect Information
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Controller trained with Perfect Information
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Controller trained with Perfect Information
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Training with Perfect Information Takeaways

• Not robust to noise

• Detrimentally rapid fluctuations in Turbine speed
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Training with Perfect Information Takeaways

• Not robust to noise

• Detrimentally rapid fluctuations in Turbine speed

Solution: 

• Integrate noise in controller training scheme

• Gaussian noise 
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Controller Learning Setup with Perfect information

Start state

Controller Neural Network              
Simulator

Control Action

Fitness 
Start State

Desired State Fitness

New State
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Ading Actuator Noise

Start state

Controller Neural Network              
Simulator

Control Action

Fitness 
Start State

Desired State Fitness

New State

Noise
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Adding Sensor Noise

Start state

Controller Neural Network              
Simulator

Control Action

Fitness 
Start State

Desired State Fitness

New State

Noise

Noise
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Controller trained with 5% noise
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Controller trained with 5% noise
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Controller trained with 5% noise
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Controller trained with 5% noise
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Controller trained with 10% noise
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Controller trained with 10% noise
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Controller trained with 10% noise
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Controller trained with 10% noise
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Training Neuro-Controllers With Noise

• Integrate Gaussian noise to controller and simulator output and train the 

controller in a loop 

• Optimize for overall performance using an evolutionary algorithm
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Training Neuro-Controllers With Noise

• Integrate Gaussian noise to controller and simulator output and train the 

controller in a loop 

• Optimize for overall performance using an evolutionary algorithm

Robust controller capable of handling noise for both sensors and actuators
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Outline

• Motivation: multiagent, multi-objective control in complex systems

• Roadmap & objectives

•Key Milestones for last year

• M 5: Develop robust controller

• M 6: Develop reconfigurable controller

• Summary & Project Status
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Milestone 6: Reconfigurable Controller

• Reconfigurable controller that can adapt to fluctuating demands

- Demand profile normally periodic and stable
- Not always!
- Special circumstances can briskly alter demand profile

Need: Need controller than can reconfigure to demand, on demand!
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Let’s look at reconfigurability

•Adapt behaviors to different performance profiles
•Rudimentary solution

- Enumerate different performance profiles
- Learn specific controller for them
- Pick a controller, based on performance profile required
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Let’s look at reconfigurability

•Adapt behaviors to different performance profiles
•Naive solution

- Enumerate different performance profiles
- Learn specific controller for them
- Pick a controller, based on performance profile required

PROBLEM:
• Enumeration intractable
• Ignores dynamics
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How may that look like?

47



Kagan Tumer, Oregon State University

Problematic transitions in dynamic space
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A better transition
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Need to account for dynamics

• Non-Markovian state

• Need to account for path taken to get there and where it’s headed next

One possible solution is:
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Need to account for dynamics

• Non-Markovian state

• Need to account for path taken to get there and where it’s headed next

One possible solution is:

• MEMORY

- Consider path taken to get there and direction headed

- Controller utilizes this information to reconfigure efficiently
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Memory-Augmented Controller

• Use Memory-Augmented Neural Networks (MANNs)

- Neural Networks augmented with memory

- Deep Neural Network (perhaps the deepest kind)

- “External” Memory

- Capture long-term dependencies in the data

- Capture variable term dependencies in the data
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Two Major Types of MANNs

1. Small Memory tied with computation 

a. Long Short term Memory (LSTM)

b. Gated Recurrent Unit (GRU)

2. Big external Memory Bank that is interacted with

a. Neural Turing Machine (NTM)

b. Differential Neural Network (DNC)
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Two Major Types of MANNs

1. Small Memory tied with computation 

a. Long Short term Memory (LSTM)

b. Gated Recurrent Unit (GRU)

2. Big external Memory Bank that is interacted with

a. Neural Turing Machine (NTM)

b. Differential Neural Network (DNC)

Solution:

• Combine the best of both worlds!
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Gated Recurrent Unit with Memory Block (GRU-MB)

• Detached memory from computation

• Retained adjustable size tractable to train
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Feedforward Net
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Read from external memory
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Write to memory
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Gate Input
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Gate what’s read from memory
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Gate what’s written to memory
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Gated Recurrent Unit with Memory Block (GRU-MB)

1.Evolving Memory-Augmented Neural Architecture for Deep Memory Problems. In Proceedings of the 
Genetic and Evolutionary Computation Conference 2017, Berlin, Germany, July 15–19, 2017 (GECCO’ 17)
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GRU-MB Results

• Sequence Classification Task
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Classification Accuracy
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Classification Accuracy
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Depth generalization
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Depth generalization
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Next Steps

• GRU-MB tested and verified on benchmark sequence classification tasks

• Translate this onto an advanced power plant application

• Customize GRU-MB 

• Train GRU-MB as reconfigurable power plant controllers
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Project Milestones

Milestone 
Number

Milestone Title Planned 
Completion Date

Actual Completion 
Date

1 Develop an abstract simulator for 
advanced power systems

June 2014 June 2014 ✔
Ongoing

2 Develop bio-mimetic control algorithm 
for advanced power systems

Sept. 2014 Sept. 2014 ✔
3 Develop system metrics to measure 

tradeoffs of plant objectives
March 2015 March 2015 ✔

4 Develop multi-objective control 
algorithm for advanced power systems

Sept. 2015 Sept. 2015 ✔
5 Develop robust controller for advanced 

power system
June 2016 June 2017

6 Develop reconfigurable, multi-objective 
controller for advanced power system

Sept. 2016 September 2017

69



Kagan Tumer, Oregon State University

Publications

1.Evolving Memory-Augmented Neural Architecture for Deep Memory Problems. S. Khadka, Jen. Chung, K. 
Tumer.  In Proceedings of the Genetic and Evolutionary Computation Conference 2017, Berlin, Germany, 
July 15–19, 2017 (GECCO’ 17)
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Questions?

Contact Info:

Shauharda (Shaw) Khadka, Kagan Tumer

Oregon State University

khadkas@oregonstate.edu

kagan.tumer@oregonstate.edu

engr.oregonstate.edu/~ktumer/

?
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Distributed multi-objective Control?

Multiagent control     multi-objective control

Many agents, one objective One agent, many objectives
- Who does what ? - trade-off objectives

Many agents , many objectives
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Project Overview

State Modeling
Neural Network
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Current 
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Feedforward Net
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Read from an external memory
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Write to memory
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Gate input
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Gate what’s read from memory
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Gate what’s written to memory
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