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Alloy Design for Elevated Temperatures

Higher temperatures - Higher energy efficiencies

Challenges —

* High T oxidation

* Moisture

* Creep and high T deformation
* Toughness & manufacturability
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Problem Definition and Approach

Grand Challenge: to speed the discovery and optimization of these chemically
complex alloys and leverage our theoretical and experimental capabilities for
assessing their long-term stability
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Theory will inform experiments on

new chemistries while experiments

will be used to validate models and
access kinetics.
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Challenges in Disordered Systems

* Experimental Measurement: quenched or annealed samples.
* Band calculations: not always related to experimentally
assessed (thermal and off-stoichiometric effects).
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Modeling Disordered Solids: Thermodynamics
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Velicky et. al., Phys Rev 165 (1968) 747 1 \

Thermodynamic Linear-

Response calculations
«  KKR-CPA based chemical or magnetic

Direct calculation of energetics
for Disordered/Partially-

Ordered/ Ordered States susceptibilities
* DFT-based multi-sublattice KKR-CPA « Directly calculate the energy
(configurational averaging) associated with ASRO

AMES
LABORATORY
p———r— Creating Materials and Energy Solutions

LS. DERCETHERT GF INRGT




Concentrated Solid Solution Alloys

Near equiatomic High Entropy Alloys (N>4) are entropically & enthalpically competing
stabilized solid solutions with potential for high strength and oxidation resistance.

A1l HEA structural HEA relative global stability
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Liu et al., J Alloys Compd. 619, 610 (2015)
Global Stability & SRO in HEA: Singh, Smirnov, Johnson, Phys. Rev. B 91, 224204 (2015)
Mechanical Properties in HEA: Sharma et al., Scientific Reports 6, 31028 (2016)
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Opportunities and Challenges

Opportunities Challenges
Manipulating SRO and MRO Requires accurate models
* Promote clustering for enhanced e Typical DFT approach is expensive
strength or toughness *m—ma i and introduces of artificial order
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* Enhanced diffusion of passivating

o

elements * Need for capturing long spatial and
I oxide A length scales with these computations
subscale 1 * Need to capture system dynamics as a
k) | function of Temperature.
base alloy
>
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Model Systems
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Phase selection in ZrHfNb alloys

Transition to a cubic
phase is observed

Sluggish transition on
cooling ) ) )
: In-situ experlments n

line with CPA showing

26 28
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: formation
Broader peaks on

cooling Y Initial transition ~1000C

22 24 26 28
€ (Inyerse Nanpmetres)

p———r— Creating Materials and Energy Solutions




Critical Questions

Phase

Stability How does the local ordering influence the phase

transformation and its kinetics?
e Do we observe similar effects with Al?

AT > 200°C
Observable in other
systems?
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<4Heating - < Cooling
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£ (Inverae Nanometres; & {Imverse Manometrest

Oxidation * Manipulate the local ordering kinetics by altering the
chemistry to yield a microstructure with improved
oxidation resistance.
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Model systems

TiZrHfAI
1.40A
B bE
Y Zr Nb Mo
La-
Lu Hf Ta w
2.55A, hep

Energetics prefer the A2
structure at higher Al
content.

1.25A
fcc

SRO: Weakly ordering

How does entropy intervene?
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SRO: Ordering A3
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v' Adding Aluminum promotes the A2 phase

v' A2 and A3 compete at low %Al, but A2 is lowest
(Al: fcc; A2: bec; A3: hep)
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SRO in High Entropy Alloys: TiZrHfAI _, ,-

v" KKR-CPA thermodynamic linear-response reveals SRO and its origins
v’ Eigenmodes of SRO (pair exchange energy S®)] reveal incipient LRO @ 1.15T,

16

Warren-Cowley SRO parameter: « TiZr = Ti-Hf o Ti-Al
v’ Ordering T, = 730 K 12 Zr-Hf <« Zr-Al + Hf-Al

v SRO peak (from Hf-Al) T g 5 5
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S(2) reveals unstable modes: = 005 | | Eé@
. oc i i i
v’ Hf-Al and Zr-Al drive SRO, = 0 | g i
v’ followed closely by Zr-Hf @; % i
v’ Albeit not true generally, 10.05 | |
pairs reflected in Warren- -0.1 : | , ]
Cowley SRO r P N r H
Global Stability & SRO in HEA: Singh, Smirnov, Johnson, Phys. Rev. B 91, 224204 (2015)
Mechanical Properties in HEA: Sharma et al., Scientific Reports 6, 31028 (2016)
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Incipient ordering in TiZrHfAIl alloys

Heating (As-Cast alloys) Cooling (As-Cast alloys)

!

Pm3m —> P-43m
(heating)

Observed structure
is a variant of the
bcc structure
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Incipient ordering in TiZrHfAIl alloys

transitions

Possibility
phases be

15 20 25 30 as 40
Q (Inverse Nanometres)

o
TZrHfAI Remains ordered §
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Rapid cooling
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Disorder “trapped” ‘ Ordering
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Alloys annealed at 1100°C does not
exhibit the Temperature dependent

of kinetically stabilized
low certain critical T

disordered

ordered
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Alloy Phase Stability for SRO/LRO: TiZrHfAI

S0 P REARREEES RERARARAS RARRRSARE T RARARSAAS I
— Disorder i 1+ Phase competition
. ; — Parital-order i :
E 40 g E occurs between
I E ' : disordered and
g | ' partially ordered
@© i
B 20F structures.
w C
,8 10;_  Small energy
difference in these
0 LA, ] structures:
-1.5 -1.2 -0.9 -0.6 -0.3 0 0.3
E - E¢ (Ry) Eoo - Epo =-7 mRy/atom
Electronic density of states favor the partially ordered
structure, relative to the disordered structure.
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Structure of TiZrHfAl alloys
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TiZrHf hcp ss
Al destabilizes hcp
y-brasses
(bcc w/ vacancies)

Simulations predicted
TiZrHf hcp ss
Al destabilizes hcp
To bcc
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Model Systems

FeNiCoCrAl

(4]

AE, (mRy/atom)
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Al ratio (A)
.'A'nnea;le_d - v Reservoir of passivating Adding Al-stablizes
i . elements BCC-phase in
v Possibility of inducing Al,CoCrFeNi
_ phase transitions and .
C . microstructure control In agreement with
100pum _

Experiments.

Singh, Smirnov, and Johnson, Phys. Rev.B 91, 224204 (2015)
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Effect of Temperature on Oxidation of FeNiCoCrAl

k 1273K

Better oxidation resistance at 1000°C

HEA: 1.6 x 1012 temperature [K]
S el 673 1473 1273 173 1073 973
s,  B%/cm’s
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k, (g%/cm*s) | E, (kJ/moI) 6-Al,0, forms at lower temperatures,

a-Al,O, 3.5x 1013 whereas, the external scale consists of

6-Al,0, 6.3 x 1013 382 a-Al,O; at higher temperatures (>1000°C)
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Evolution of the Oxide Scale in FeNiCoCrAl

The initial
oxide is rich in
Cr content, and
becomes Al
rich with time.

'm'

1 hour @ 1000°C
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Effect of Al:Cr ratio on Oxidation of FeNiCoCrAl

1.3_- —— 20 atom % Al
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6 2 4 6 8 10 12 14 16 18 20 of chromia, increased Al content
Time (hours) helps with oxidation.

* But the initial formation of Cr,0; promotes the growth of Al,O,, hence
extremely low Cr content may not be desirable either
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Improving Oxidation Resistance

~ Oxide scale

Subscale (FeCr) rich — governs Al diffusion/interlayer oxides

Base Alloy —
(FeCr) rich + (AINi) rich

(Both phases have similar Co content)

* How does Cr content affect the subscale thickness and
composition?

e (Can the distribution of (FeCr) rich phase be modified, via different
processing routes, in order to tune the “accessibility” of Al to the
external scale by modifying the subscale thicknesses?
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The

Kinetic Challenges

Kinetic Challenges

-

mnetics of Oxidation \

\_

How can we predict the
oxidation kinetics as a
function of T and comp?

Can we design
microstructures to

optimize oxidation
resistance? /
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»K/inetics of Phase Transformati%

* How do we rapidly assess the
effect of time and Temperature
on Phase Transformations and
control the microstructures?

* Canthe calculated T, in
conjunction with activation

energies predict the transition
Qemperatures more accurateW
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Proposed Work

 Work on the ZrHfNb and TiZrHfAl alloys indicate significant
kinetic effects during phase transformations — including the
possibility of kinetic stabilization of phases below a certain
blocking Temperature ?

* (Can these concepts be leveraged for modifying the
microstructures of High Entropy Alloys, and eventually affect the
oxidation resistance ?

Focus Areas for FY 2017-2018: In-situ diffraction studies for rapid
assessment of TTT diagrams for quinary Al and Cr containing alloys,
and subsequently designing phase/microstructure assemblage by
adjusting processing conditions for optimal oxidation resistance.
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General Summary

* Extension of the KKR-CPA approach to general lattices, i.e. n
components, n sub-lattices.

 Combined KKR-CPA, ASRO and planar defect energies (with
Suzuki effect) will guide the design of improved alloys, e.g.,
High-Entropy Alloys.

* Used In-situ synchrotron diffraction to determine the T range of
stability

* Determined evolution of the oxide scale at elevated
temperatures

A combination of the theoretical tools and experimental work
on kinetics of transformations and oxidation will guide the
microstructural design of novel HEAs.
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