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Main reactions: 

Syngas Chemical Looping (SCL) Process for H2 Production

Reducer: CxHyOz + Fe2O3 → CO2 + H2O + Fe

Oxidizer: Fe + H2O → Fe3O4 + H2 + Q

Combustor: Fe3O4 + O2 → Fe2O3 + Q

Total: CxHyOz + H2O + O2 → CO2 + H2 + Q

>98% carbon capture efficiency



Autonomous Process Control Concept

• Objective: develop an advanced process automation 
control architecture and imaging and optimization 
sensor information for the OSU chemical looping 
process

• Develop HLC-SMC control scheme for process 
automation (OSU ECE)

• Establish sensor algorithm for high temperature ECVT 
(Tech4Imaging) 

• Integrate process performance parameters with 
FocalPoint Optimization System (B&W)

• Prepare and test process control and optimization 
concepts in 25 kWth sub-pilot test unit (OSU CBE)

Sub-Pilot Unit Pilot Unit

• OSU chemical looping technology: advanced solid and 
gaseous fuel conversion process for H2 and electricity co-
generation with in-situ CO2 capture 

• Phase I: test control concept in an integrated sub-pilot test 
unit at high temperature, reactive conditions

• Phase II: demonstrate control concept at commercially 
applicable pilot scale test unit at high temperature, high 
pressure, reactive conditions

Project Team

Summary of DE-FE0026334



Utkin, V., "Variable structure systems with sliding modes," Automatic Control, IEEE 
Transactions on , vol.22, no.2, pp.212,222, Apr 1977

• Advantage: State trajectory control, robustness

• Controller changes behavior as the state 
trajectory crosses the surface

• Exemplary mathematical form:

• Two stages:
• Reaching mode: to get to the sliding 

surface
• Sliding mode: reduced order motion on 

the surface

• Disadvantage: chattering 
• actuator wear-and-tear 
• potential plant excitement

Sliding Mode Controller (SMC)



Matlab simulation of a sliding mode 
controller design for pressure control

• Control law: rate of valve opening change
• 𝑢𝑢 = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑

• S2 Controller: 
• 𝑢𝑢 = 𝑀𝑀2 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆2
• 𝑆𝑆2 = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
− 𝑅𝑅𝑅𝑅

• 𝑅𝑅𝑅𝑅 = 1 ⁄𝑝𝑝𝑠𝑠𝑠𝑠 𝑚𝑚𝑠𝑠𝑠𝑠
• S3 Controller: 

• 𝑢𝑢 = 𝑀𝑀3 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆3
• 𝑆𝑆3 = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝑃𝑃 − 𝑃𝑃𝑠𝑠𝑠𝑠 ⋅ 𝐾𝐾

• 𝑃𝑃𝑠𝑠𝑠𝑠 = 30𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠,𝐾𝐾 = 1
3
𝑚𝑚𝑠𝑠𝑠𝑠−1



Phase Plane
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Arrows represent the 
direction of system state as 
time progresses
1, 2 : Pressurization
4, 5 : Controller action in 
response to the disturbance
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Ramp surface: 
𝑢𝑢 = 𝑀𝑀2 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆2
𝑆𝑆2 =
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SS surface: 
𝑢𝑢 = 𝑀𝑀3 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆3
𝑆𝑆2 =

𝑑𝑑𝑃𝑃
𝑑𝑑𝑑𝑑

+ 𝑃𝑃 − 𝑃𝑃𝑠𝑠𝑠𝑠 ⋅ 𝐾𝐾
𝑃𝑃𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑟𝑟𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑,𝐾𝐾 = 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑

𝑢𝑢 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

SCL Pilot Unit Pressurization/Depressurization



Goal:
• Reduce chattering
• Enhance disturbance rejection

Design of adaptive M

Modified sigmoid 
function:

𝑀𝑀 = 𝑏𝑏 +
𝑅𝑅

1 + 𝑟𝑟𝑐𝑐−𝑑𝑑 𝑠𝑠 𝑘𝑘

𝑀𝑀𝑚𝑚𝑚𝑚𝑑𝑑: upper 

limit of designed 

actuator action 

𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚: minimum control effort 

to maintain steady state 

Dead band 
Transitional zone

𝑏𝑏

𝑑𝑑

𝑘𝑘

𝑀𝑀

𝑠𝑠



𝑀𝑀 = 0.4 𝑀𝑀 = 0.8Adaptive 𝑀𝑀



Implementation of automatic start-up algorithm
• Pre-set operation 

goals

• HLC-SMC structure

• 1-click startup for 
fluidization, 
entrainment and 
maintaining 
circulation during 
heat-up

• Fuel injection upon 
reaching reaction 
temperatures and 
operation 1-click 
acknowledgement



Start-up sequence test drive
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• Achieved automatic 

startup with zero 
operator intervention

• Maintained oxygen 
carrier circulation at 
minimal solid flow rate 
using self-regulating 
aeration and 
entrainment gases

Nitrogen 
Injection

Syngas Injection

Temperature spike from 
voluntary capacity change



Circulation rate control
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• SMCs attempt 
to minimize 
attrition by 
controlling 
circulation rate

High-potential 
circulation stoppage 

indicator

Aggressive 
control action 

Process responded, 
circulation resumed
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Fuel injection mode

• Nitrogen 
injection to 
verify behaviors 
for individual 
SMCs

• Extreme 
capacity change 
to test 
disturbance 
rejection 
performance



Fuel injection mode
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• Simultaneous control actions 
correctly executed by all SMCs with 
no operator intervention 

• Achieved ~99% syngas conversion

• No gas breakthrough was observed in 
either reactor



SMC Response to Capacity Change

0
5

10
15
20
25
30
35
40

08:09 08:24 08:38 08:52 09:07 09:21
-2
0
2
4
6
8

10
12
14
16
18

G
ua

ge
 P

re
ss

ur
e 

(in
 H

2O
)

 P_Gas seal,top
 P_Red,out
 P_Red,in
 P_Gas seal,bottom

C
ap

ac
ity

 (k
W

)

Time

 Capacity



Combustor Performance Investigation - ECVT

3” ID

9.75”

Ceramic Lining

Capacitance 
Probe

Sensor Assembly Capacitance Probe
Arrangement



23 C, 600 slpm
Ug-Umf = 1.49

Image Reconstruction:

335 C, 300 slpm
Ug-Umf = 1.5

640 C, 220 slpm
Ug-Umf = 1.80

720 C, 176 slpm
Ug-Umf = 1.47

Image reconstruction frame rate: 80 Hz ~ 260 
Hz

Solids 
holdup

αs

Combustor Performance Investigation - ECVT



Combustor Performance Investigation - ECVT
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Slug Velocity vs. Gas Velocity
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Slug Frequency vs. Gas Velocity

23 C, 600 slpm
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Additional Work

• Continued sub-pilot demonstration
• Tuning adaptive SMC
• Comparative testing with conventional controls 

• FocalPoint Integration
• HLC Performance
• Sensor fault detection
• Thermodynamic Optimization parameters

• ECVT Solid flow control development
• Moving bed flow characterization
• Electrical characterization of ceramic and oxygen carrier 

material
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