Search Publications

Search Publications


Back Button

Welcome to the Energy Analysis Search Publications page. Hundreds of Energy Analysis related publications can be found in this repository. To get started, begin filtering the results below by using the quick filters located on the Search Publications Landing Page or search within filtered results by using the search box below. 


Sort Preference:


Search Terms
Technology Focus: Coal and Coal Biomass to Liquids

Cost and Performance Baseline for Fossil Energy Plants - Volume 4: Coal-to-Liquids via Fischer-Tropsch Synthesis

Date: 10/15/2014
Contact: William Summers

This report establishes performance and cost data for coal-to-liquids systems, specifically by means of gasification and Fischer-Tropsch reaction. The analyses were performed on a consistent technical and economic basis to assess the design and financial performance of a commercial-scale coal-to-Fischer-Tropsch liquids facility. The cost and performance data were compiled from published reports, information obtained from vendor quotes and users of the technology, and data from designing and building utility and refining projects.


Quality Guideline for Energy System Studies: CO2 Impurity Design Parameters

Date: 9/27/2013
Contact: William Summers

This section of the Quality Guidelines provides recommended impurity limits for CO2 stream components for use in conceptual studies of CO2 carbon capture, utilization, and storage systems. These limits were developed from information consolidated from numerous studies and are presented by component. Impurity levels are provided for limitations of carbon steel pipelines, enhanced oil recovery (EOR), saline reservoir sequestration, and cosequestration of CO2 and H2S in saline reservoirs.


Quality Guideline for Energy System Studies: Process Modeling Design Parameters

Date: 1/31/2012
Contact: William Summers

The purpose of this section of the Quality Guidelines is to document the assumptions most commonly used in systems analysis studies and the basis for those assumptions. The large number of assumptions required for a thorough systems analysis make it impractical to document the entire set in each report. This document will serve as a comprehensive reference for these assumptions as well as their justification.


Life Cycle Analysis: Ethanol from Biomass - Appendix

Date: 9/1/2011
Contact: Timothy J. Skone, P.E.

The Appendix of Life Cycle Analysis of an Ethanol Plant utilizing Biomass develops an Inventory of emissions results and calculates Life Cycle costs.


Life Cycle Analysis: Ethanol from Biomass - Presentation

Date: 9/1/2011
Contact: Timothy J. Skone, P.E.

The Life Cycle Analysis of an Ethanol Plant utilizing Biomass develops an Inventory of emissions results and calculates Life Cycle costs.


Life Cycle Analysis: Ethanol from Biomass

Date: 8/1/2011
Contact: Timothy J. Skone, P.E.

The Life Cycle Analysis of an Ethanol Plant utilizing Biomass develops an Inventory of emissions results, and calculates Life Cycle costs. This is a life cycle environmental and cost analysis of ethanol using starch and cellulosic feedstocks. It provides a life cycle comparison of three tiers of technology, three types of biomass feedstocks, and two fuel-blending compositions for a total of 18 distinct pathways. When ethanol is blended with gasoline at an 85/15 ratio between ethanol and gasoline, the life cycle greenhouse gas (GHG) emissions are highly variable due to different feedstock types and ethanol production technologies. The biochemical conversion of cellulosic feedstocks to ethanol has the lowest GHG emissions in this analysis, because of the energy recovered at the ethanol plant.


Cost and Performance Baseline for Fossil Energy Plants - Volume 2: Coal to Synthetic Natural Gas and Ammonia (Presentation)

Date: 7/5/2011
Contact: William Summers

Presentation of Volume 2: This report establishes performance and cost data for coal fueled plants producing synthetic natural gas and ammonia. The plants are based on a dry-feed entrained-flow gasifier and include cases using bituminous, sub-bituminous, and lignite coals. All configurations were studied with and without carbon sequestration. The analyses were performed on a consistent technical and economic basis that accurately reflects current market conditions for plants starting operation in 2012. This is believed to provide the most comprehensive set of cost and performance data available in the public literature to date. The cost and performance data were compiled from published reports, information obtained from vendor quotes and users of the technology, and data from designing and building projects.


Cost and Performance Baseline for Fossil Energy Plants - Volume 2: Coal to Synthetic Natural Gas and Ammonia (Report)

Date: 7/5/2011
Contact: William Summers

This report establishes performance and cost data for coal fueled plants producing synthetic natural gas and ammonia. The plants are based on a dry-feed entrained-flow gasifier and include cases using bituminous, sub-bituminous, and lignite coals. All configurations were studied with and without carbon sequestration. The analyses were performed on a consistent technical and economic basis that accurately reflects current market conditions for plants starting operation in 2012. This is believed to provide the most comprehensive set of cost and performance data available in the public literature to date. The cost and performance data were compiled from published reports, information obtained from vendor quotes and users of the technology, and data from designing and building projects.


Quality Guideline for Energy System Studies: Cost Estimation Methodology for NETL Assessments of Power Plant Performance

Date: 4/30/2011
Contact: William Summers

This paper summarizes the cost estimation methodology employed by NETL in its assessment of power plant performance. A clear understanding of the methodology used is essential for allowing different power plant technologies to be compared on a similar basis. Though these guidelines are tailored for power plants, they can also be applied to a variety of different energy conversion plants (e.g., coal to liquids, syngas generation, hydrogen).


Current and Future Technologies for Gasification-Based Power Generation, Volume 2: Carbon Capture, Revision 1

Date: 11/1/2010
Contact: James Fisher

The impact of a portfolio of advanced technologies in DOE's Clean Coal R&D Program were evaluated in gasification-based power plant configurations with carbon capture and sequestration (CCS) resulting in power plants that are significantly more efficient and affordable than today's fossil energy technologies. In the IGCC process, the study estimates that a 7 percentage point efficiency improvement over conventional gasification technology is possible. With fuel cell technology, process efficiency improvements of 24 percentage points are potentially achievable. Furthermore, successful R&D for the advanced technologies evaluated results in capital costs and cost of electricity that is more than 30% below that of conventional IGCC technology with CCS.